АКАДЕМИЯ НАУК УКРАИНСКОЙ ССР ГЛАВНАЯ АСТРОНОМИЧЕСКАЯ ОБСЕРВАТОРИЯ

в. п. цесевич

ИССЛЕДОВАНИЕ ПЕРЕМЕННЫХ ЗВЕЗД В ИЗБРАННЫХ ОБЛАСТЯХ МЛЕЧНОГО ПУТИ

ИЗДАТЕЛЬСТВО «НАУКОВА ДУМКА» КИЕВ — 1976

УДК 523802

В монографии приведена полная обработка более 20 тысяч наблюдений 122 переменных звезд. Наблюдения выполнены по снимкам неба московской, гарвардской, симеизской и одесской коллекций снимков звездного неба.

Книга рассчитана на астрономов и астрофизиков, аспирантов и студентов старших курсов

астрономических специальностей.

Ответственный редактор

канд. физ.-мат. наук М. Я. Орлов

Рецензенты:

канд. физ.-мат. наук М.Г. Родригес, канд. физ.-мат. наук А.М.Ш ульберг

Редакция физико-математической литературы

С Издательство «Наукова думка», 1976 г.

ПРЕДИСЛОВИЕ

Одна из наиболее ценных коллекций снимков избранных областей неба хранится в Москве в Государственном астрономическом институте им. П. К. Штернберга. Снимки (серия А) получены при помощи 400-мм астрографа Цейсса. Они в основном и использованы автором при выполнении данной работы. Для краткости эти наблюдения будем называть московскими. Использованы также симеизская коллекция снимков неба, выполнявшихся для поисков астероидов, и снимки, полученные П. Ф. Шайн и ее сотрудниками с помощью 400-мм астрографа Цейсса. Несколько звезд южного полушария неба исследованы автором по снимкам, полученным до 1954 г. в гарвардской обсерватории. Более яркие объекты изучались также по одесским и старым московским снимкам (серии S и T).

Оценки блеска на этих снимках выполнялись по методу Нейланда — Блажко по отношению к звездам сравнения. Карты и обозначения звезд сравнения приведены в конце книги. В тех случаях, когда это было возможно, степенные шкалы превращались в звездные величины. Данные о звездах сравнения приведены в каждой из семи глав.

После установления приближенного значения периода выводились «сезонныс» средние кривые блеска. Если наблюдений было достаточно, то осреднение производилось действительно внутри одного наблюдательного сезона. В противном случае осреднение данных охватывало и более длительный промежуток времени. Поэтому мы поставили слово «сезонный» в кавычки. Из сезонной кривой блеска определялся момент максимума (или минимума) блеска. Совокупность таких моментов давала возможность уточнить приближенное значение периода по способу наименьших квадратов, а также судить о стабильности или переменности псриода. Уже после этого выводилась общая средняя кривая изменения блеска и определялись ее элементы.

Оказалось, что из 30 изученных затменных звезд четыре обладают переменными периодами. Из 52 звезд типа RR Лиры восемь изменили за время наблюдений свои периоды, а у трех (КЗП 501, WY Щита и HV Лисички), кроме того, был обнаружен сильный эффект Блажко.

При массовом изучении большой совокупности объектов выявляются особенные, уникальные, звезды. Так, в нашем случае уникальной оказалась цефенда SU Щита. Она крайне нестабильна. Средняя кривая ее блеска имеет необычный вид. Этот, объект следует более детально изучить по новым материалам.

Очень интересной оказалась и затменная звезда ЕХ Лисички: при несомненном полном затмении практически отсутствует интервал постоянного блеска в минимуме; ветви кривой блеска несимметричны. По-видимому, сказывается влияние газовых потоков.

Три звезды (НО, DN и КЗП 506 Возничего) исследовать не удалось. Расположенные на небе совсем близко к звезде RW Возничего, они, вероятно,

принадлежат к малоамплитудным звездам этого типа. Следовало бы изучить их спектры.

В 1964 г. автор при составлении Атласа поисковых карт для переменных звезд в Гарвардской обсерватории знакомился с оригинальными журналами открытий звездной переменности и обнаружил в них неопубликованные записи открытия ряда переменных звезд в области созвездия Часов, сделанные, судя по почерку, З. Юз. Наблюдения автора подтвердили переменность некоторых из этих звезд. Результаты этого исследования приведены в главе III.

Для удобства пользования книгой в конце монографии приведен указатель звезд, в котором помещены достаточные сведения для того, чтобы отыскать как описание свойств звезды, так и всю дополнительную информацию.

В заключение автор выражает благодарность коллективу Государственного астрономического института им. П. К. Штернберга за предоставление коллекции снимков, М. Гирняк и В. Сатывалдыеву — за присланные наблюдения UY Щита на снимках львовской и душанбинской коллекций, сотрудникам Астрономической обсерватории Одесского государственного университета Б. А. Драгомирецкой — за участие в обработке наблюдений, Л. П. Климовской и Э. С. Препиновской — за помощь в оформлении книги. Приношу также благодарность Л. Ф. Томак за воспроизведение репродукций.

В. П. Цесевич

Глава I. ИССЛЕДОВАНИЕ ПЕРЕМЕННЫХ ЗВЕЗД В ОБЛАСТИ СОЗВЕЗДИЙ ВОЗНИЧЕГО И ТЕЛЬЦА

По снимкам неба московской, одесской и симеизской (планетной) коллекций был оценен блеск ряда неисследованных и малоисследованных переменных звезд. Привязка к фотометрическим стандартам дала возможность определить звездные величины звезд сравнения (табл. 1).

Таблица 1. Фотографические звездные величины звезд сравнения

а	ь	с	d	ŧ	,
11 92	19 41	13.97			
			16.08		_
				_	
			14.02		
14.50			10.00	_	_
			13.88		_
			_		
12.59	13.07	13.25	13.55	13.77	
13.98	14.38	14.71			
11.85	12.62	13.61	14.48	_	
			15.78	16.23	_
			-	_	
		14 55	14.78	15.02	
				_	
				-	_
		10.10	_	_	
		15.50	10.00	10.05	17.22
				10.00	17.22
				_	_
12.15	13.98	14.31	14.91	_	_
	11.92 13.93 12.92 14.50 — 12.65 12.59	11.92 12.41 13.93 14.96 12.92 13.84 14.50 14.95 — 12.57 12.65 13.15 12.59 13.07 13.98 14.38 11.85 12.62 14.10 14.87 13.45 15.41 13.93 14.24 15.17 15.64 13.52 14.47 14.76 15.59 14.50 15.33 12.70 13.58	11.92 12.41 13.27 13.93 14.96 15.71 12.92 13.84 14.23 14.50 14.95 15.43 — 12.57 13.36 12.65 13.15 13.91 12.59 13.07 13.25 13.98 14.38 14.71 11.85 12.62 13.61 14.10 14.87 15.27 13.45 15.41 — 13.93 14.24 14.55 15.17 15.64 16.85 13.52 14.47 15.18 14.76 15.59 — 14.50 15.33 15.50 12.70 13.58 14.62	11.92 12.41 13.27 — 13.93 14.96 15.71 16.98 12.92 13.84 14.23 14.52 14.50 14.95 15.43 — — 12.57 13.36 13.88 12.65 13.15 13.91 — 12.59 13.07 13.25 13.55 13.98 14.38 14.71 — 11.85 12.62 13.61 14.48 14.10 14.87 15.27 15.78 13.45 15.41 — — 13.93 14.24 14.55 14.78 15.17 15.64 16.85 — 13.52 14.47 15.18 — 14.50 15.33 15.50 16.00 12.70 13.58 14.62 15.05	11.92 12.41 13.27 — — 13.93 14.96 15.71 16.98 — 12.92 13.84 14.23 14.52 — 14.50 14.95 15.43 — — 12.57 13.36 13.88 — 12.65 13.15 13.91 — — 12.59 13.07 13.25 13.55 13.77 13.98 14.38 14.71 — — 11.85 12.62 13.61 14.48 — 14.10 14.87 15.27 15.78 16.23 13.45 15.41 — — — 13.93 14.24 14.55 14.78 15.02 15.17 15.64 16.85 — — 14.50 15.33 15.50 16.00 16.65 12.70 13.58 14.62 15.05 —

ЗАТМЕННЫЕ ЗВЕЗДЫ

СН Возничего (Aurigae)

Была найдена предварительная формула, с помощью которой были построены сезонные средние кривые и определены моменты минимумов блеска. К ним добавлены данные Хофлит [13] о моментах ослабления блеска, после чего получена окончательная формула:

Min hel JD = $2439414.454 + 5.009838 \cdot E$; $P^{-1} = 0.1996072528$. Она использована при вычислении остатков О—С.

Источник	Min hel JD	E	o-c
Хофлит * * * Москва	2424800.84 * 4825.83 * 5211.50 * 6689.40 * 39414.473 40511.591		+.06 06
		•	

^{*} Ослабление блеска

Таблица 2. Средняя кривая блеска СН Aurigae

Фаза	m	n	Фаза	m	n	Фаза	m	n
0P.0068 .0200 .0290 .110 .180 .212 .226 .296	16.57 16.58 16.49 14.87 14.70 14.61 14.63 14.81 14.93	5 4 6 9 10 10	0P.379 .414 .430 .486 .517 .550 .571 .606	14.65 14.80 15.08 14.91 14.81 14.66 14.90 14.63 14.77	10 10 6 5 6 5 10 9	0P.721 .776 .819 .883 .9139 .9509 .9660 .9795	14.93 14.98 14.72 14.81 14.67 15.33 16.31 16.53 16.66	10 10 9 5 3 2 5 5

Средняя кривая блеска (табл. 2, рис. 1) рассчитана по приведенной выше формуле. К сожалению, наблюдения на восходящей ветви кривой блеска отсутствуют. Довольно велико рассеяние точек в максимальной части кривой, что вызвано возможной переменностью звезды сравнения. Блеск изменяется в пределах от $14^{\rm m}.8$ до $16^{\rm m}.6$. Минимум длится около 0.15~P=0.75 суток. Возможна короткая остановка изменения блеска в середине минимума. Вторичный минимум, если и существует, то очень неглубок.

EI Возничего (Aurigae)

По сезонным кривым, найденным с предварительной формулой, определены моменты минимумов, а по ним получена окончательная формула

Min hel JD =
$$2439060.448 + 1.226706 \cdot E$$
; $P^{-1} = 0.815191252$.

Построенная по всем наблюдениям средняя кривая (см. рис. 1, табл. 3) показывает, что блеск звезды изменяется в пределах от 14^m.55 до 14^m.97. Первичный и вторичный минимумы имеют одинаковую глубину. Затмения частные.

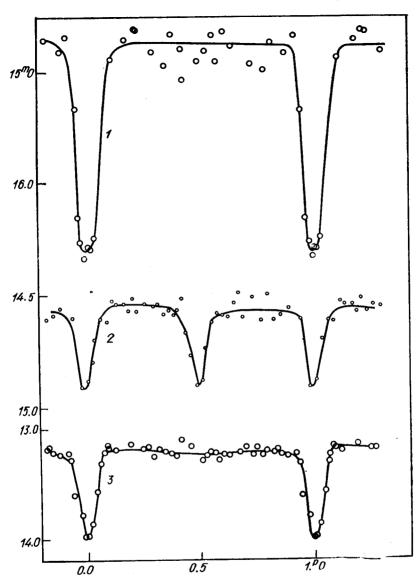


Рис. 1. Средние кривые блеска звезд типа Алголя: 1 — СН Aurigae; 2 — El Aurigae; 3 — GY Aurigae.

Таблица 3. Средняя кривая блеска El Aurigae

Фаза	m	n	Фаза	m	n	Фаза	m	n
0P.007 .026 .040 .064 .090 .113 .134 .167 .185 .202 .226 .257 .293	14.88 14.80 14.70 14.61 14.62 14.53 14.54 14.54 14.57 14.52 14.57 14.57 14.54 14.55	555555555555555555555555555555555555555	0P.314 .323 .366 .382 .402 .422 .440 .458 .487 .514 .521 .552	14.54 14.58 14.57 14.59 14.56 14.51 14.67 14.77 14.90 14.88 14.74 14.62 14.58	555555555555555555555555555555555555555	0P.599 .622 .645 .666 .688 .721 .767 .795 .822 .853 .890 .940	14.59 14.60 14.54 14.49 14.60 14.51 14.61 14.50 14.61 14.56 14.60	555555555556

GY Возничего (Aurigae)

После длительных поисков были найдены предварительные элементы, с помощью которых построены средние сезонные кривые блеска и определены моменты минимумов. К ним добавлены два момента ослаблений блеска, которые показывают, что возможно изменение периода с большой амплитудой О—С, которое на основании имеющегося материала исследовать невозможно. Это видно из следующей сводки моментов минимума:

Источник	Min hel JD	E	0-C
Москва Симеиз Одесса Москва • Осла	2417233. 19 * 27398. 56 * 36979.695 9561.315 бление блеска.	$-4796 \\ -2327 \\ 0 \\ +627$	+0.59 + .08 .000 + .004

Остатки О — С вычислены относительно формулы

Min hel JD =
$$2436979.695 + 4.11741 \cdot E$$
; $P^{-1} = 0.2428711$.

которая использована и при получении средней кривой блеска, по-казанной на рис. 1 (табл. 4). Из этой таблицы видно, что звезда типа Алголя имеет амплитуду от $13^{\rm m}.18$ до $13^{\rm m}.98$ и возможный небольшой вторичный минимум с амплитудой $0^{\rm m}.09$. Затмение длится около 0.16 P=0.66 суток.

AP Тельца (Tauri)

Переменность этой звезды была открыта Хофлит [13], которая определила ее период (0.48600), но не привела момент минимума блеска. Наши наблюдения дают возможность определить следующие элементы:

Min hel JD = $2439414.433 + 0.9719728 \cdot E$; $P^{-1} = 1.028835375$.

Таблица 4. Средняя кривая блеска GY Aurigae

Фаза	m	n	Фаза	m	n	Фаза	m	n
0 ^p .0081	13.98	5	0 ^p .370	13.22	10	0 ^p .743	13.16	10
.0198	13.85	5	.393	13.24	10	.766	13.23	10
.0420	13.56	5 5 5 5 5	.415	13.10	10	.790	13.19	10
.0582	13.30	5	.453	13.15	10	.819	13.20	9
.0682	13.22	5	.501	13.29	10	.835	13.17	7
.0824	13.15	5	.524	13.24	10	.850	13.21	
.0929	13.17	5	.543	13.21	10	.879	13.23	9 9 2
.123	13.18	10	.561	13.21	10	.9139	13.22	ž
.195	13.14	10	.578	13.27	10	.9296	13.29	$oldsymbol{ ilde{2}}$
.248	13.17	10	.597	13.22	10	.9420	13.60	$\tilde{2}$
.271	13.16	10	.624	13.22	10	.9806	13.78	4
.297	13.25	10	.671	13.20	10	.9941	13.98	2
.321	13.18	10	.704	13.16	10		10.00	
.346	13.20	10	.725	13.23	10			

Представление моментов минимумов и ослаблений формулой с половинным периодом имеет вид

Источник	Min hel JD	2E	O-C
Симеиз	2424469.378 *	-30752	-0.006
>	34719.339 *	 9661	+ .016
Москва	9414.433	0	005
>	9558.284	+ 296	006
>	40541.442	∔ 2319	+ .002

^{*}Ослабление блеска.

Эта звезда относится к типу Алголя с неравными минимумами. Средняя кривая блеска приведена в табл. 5 и изображена на рис. 2.

Таблица 5. Средняя кривая блеска AP Tauri

Фаза	m	n	Фаза	m	n	Фаза	m	n
0 ^p .011	14.52	5	0 ^p .240	14.26	10	0 ^p .717	14.26	10
.024	14.44	5	.269	14.27	10	.790	14.27	10
.043	14.35	5	.306	14.25	10	.837	14.28	10
.064	14.37	5	.368	14.24	10	.895	14.31	10
.080	14.27	5	.414	14.28	3	.933	14.28	5
.098	14.32	5 5	.448	14.33	Ă	.953	14.37	4
.129	14.23	10	.490	14.41	á	.973	14.60	5
.158	14.25	10	.523	14.47	4	.992	14.58	4
.181	14.24	10	.547	14.37	4	.552	14.00	7
.212	14.24	10	.631	14.24	10			

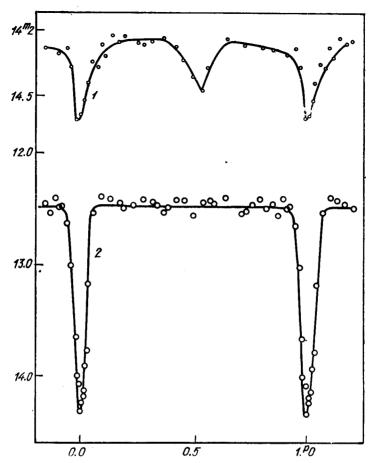


Рис. 2 Средние кривые блеска затменных звезд: t — AP Tauri; 2 — AS Tauri.

AS Тельца (Tauri)

По московским наблюдениям можно построить среднюю кривую блеска и определить точный момент минимума. Ему придан вес, равный 25. Получены следующие элементы:

Min hel JD = $2439390.595 + 3.4835542 \cdot E$; $P^{-1} = 0.287063138$.

Остатки O-C и средняя кривая блеска вычислены относительно этой формулы:

Источник	Min hel JD	E	O-C
Москва	2419447.252 *	5725	+0.005
Симеиз	27041.378 *	3545	— .013
Москва	33329.223 *	-1740	4012

Источник	Min hel JD	E	D - C
Одесса	2436607.300*	799	+ .065
>	7582.576*	 519	054
>	8084.275*	375	+ .013
>	9059.609*	 95	.056
Москва	9390.594	0	.001
D	40153.526*	+219	+ .033

^{*} Ослабление блеска.

Кривая блеска (табл. 6), показанная на рис. 2, характерна для звезд типа Алголя. Блеск изменяется от $12^{m}.45$ до $14^{m}.45$. Вторичный минимум не заметен. Главный минимум длится 0.16 P=0.56 суток.

Таблица 6. Средняя кривая блеска AS Tauri

	-							
Фаза	m	n	Фаза	m	п	Фаза	m	n
0 ^p .0025	14.34		0 ^p .333	12.47	10	0 ^p .788	12.42	10
.0046	14.28	4	.360	12.54	10	- 812	12.50	10
.0120	14.23	4	.385	12.48	10	.842	12.46	10
.0194	13.91	4	.424	12.42	10	.868	12.55	10
.0248	13.66	2	.456	12.43	10	.888	12.41	10
.0342	13.17	3	.499	12.56	10	.9044	12.49	10
.0590	12.54	10	.530	12.45	10	.9186	12.48	10
.0913	12.40	10	.567	12.42	10	.9360	12.65	5
.128	12.42	10	.588	12.46	10	.9611	13.01	3 3 3
.166	12.46	10	.637	12.40	10	.9809	13.65	3
.191	12.49	10	.697	12.54	10	.9848	13.99	
.224	12.47	10	.722	12.52	10	.9940	14.07	4
.270	12.42	10	.754	12.47	10	.9966	14.43	3

КЗП 475

Переменная открыта Хофлит [13], которая пронаблюдала один минимум блеска (2426717.407 — .440), когда звезда ослабла до $16^{\rm m}$ при нормальном блеске около $14^{\rm m}$. По московским снимкам мы получили сначала предварительные элементы, а затем по средней кривой блеска — уверенный момент минимума и формулу

Min hel JD = $2439914.447 + 20.88138 \cdot E$; $P^{-1} = 0.047889555$.

Таблица 7. Средняя кривая блеска КЗП 475

Фаза	m	п	Фаза	m	n	Фаза	m	n
0 ^p ·0114	15.49	2	0 ^p ·3381	14.09	10	0 ^p .7950	14.22	11
.0279	14.37	$\bar{2}$.3637	14.13	10	.8506	14.18	11
.0590	14.12	8	.3983	14.23	10	.8785	14.08	11
.0912	14.25	7	.4518	14.20	10	.9081	14.24	10
.1052	14.11	12	.5107	14.16	10	.9146	14.15	9
.1508	14.15	12	.5688	14.20	10	.944 9	14.29	- 10
.1957	14.19	10	.6145	14.23	10	.9904	15.89	3
.2275	14.15	10	.6946	14.22	10	.9934	16.34	3
.2804	14.18	10	.7352	14.17	10	.996 8	16.39	2

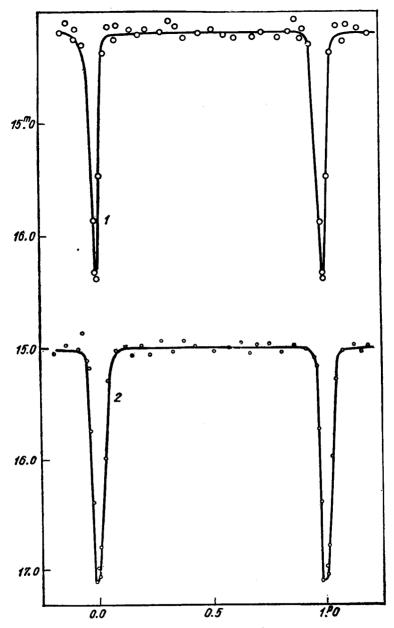


Рис. 3. Средние кривые блеска звезд типа Алголя: 1 — КЗП 475; 2 — КЗП 490.

По этой формуле вычислена средняя кривая блеска (табл. 7, рис. 3). Звезда изменяет свой блеск в пределах от $14^{\rm m}.15$ до $16^{\rm m}.40$. Вторичный минимум не заметен. Главное затмение длится 0.06~P=1.75 суток.

КЗП 490

Изучение московских снимков позволило уверенно определить шесть моментов минимума, которые объединяются формулой

Min hel JD = $2439060.584 + 2.825489 \cdot E$; $P^{-1} = 0.353921038$.

Таблица 8. Средняя кривая блеска КЗП 490

Фаза	m	n	Фаза	m	n	Фаза	m	п
0 ^p .0004	16.99	2	0 ^p .283	14.94	10	0 ^p .810	15.05	8
.0066	17.05	2	.338	15.02	10	.866	14.98	9
.0134	16.79	2	.388	14.94	10	.9176	15.01	4
.0314	15.99	3	.432	14.99	10	.9353	14.86	3
.0492	15.29	2	.519	15.03	10	.9532	15.10	3
.0832	15.03	3	.581	14.99	10	.9642	15.18	2
.127	14.99	10	.630	14.95	10	.9728	15.75	3
.162	15.05	10	.668	15.05	10	.9835	16.39	4
.199	14.98	10	.703	14.98	10	.9954	17.08	3
.236	15.05	10	.756	14.99	10			

Вычисленная по этой формуле средняя кривая блеска (см. рис. 3) приведена в табл. 8. Вторичный минимум не заметен. Главный минимум длится $0.12\ P=0.44$ суток. Блеск звезды изменяется от $14^{\rm m}.98$ до $17^{\rm m}.08$. Приведем сводку моментов минимума и их уклонений O-C:

Mii	ı h	el	JD	Ε	0-	– C	Min	hel	JD	E	Ο.	— C
	9060 9145 9385	3.35	52	30	+	0.001 .003 .001		9419.	410	126 127 300	÷	.011

КЗП 499

На московских снимках обнаружено 11 ослаблений блеска этой звезды типа Алголя. На некоторых сериях снимков, полученных в один вечер, удается достаточно надежно определить момент минимума. В приведенной ниже сводке указаны все моменты и звездные величины:

Источния	m	Min hel JD	<i>E</i> O-C
Москва	16.69		-1743 + 0.03
>	16.43	4769.30**	-130003
>	16.22	9395.58**	711
>	16.87	9420.523+	0: + .008

Эти моменты представляются формулой

Min hel JD = $2439420.515 + 3.577832 \cdot E$; $P^{-1} = 0.27949887$,

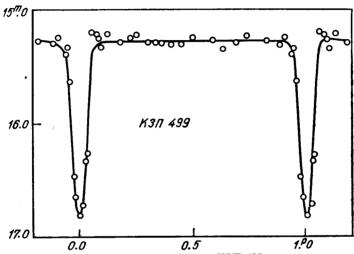


Рис. 4. Средняя кривая блеска звезды КЗП 499.

относительно которой построена средняя кривая блеска (табл. 9, рис. 4). Блеск звезды изменяется в пределах от $15^{\rm m}.2$ до $16^{\rm m}.8$. Вторичный минимум не заметен. Главный минимум длится 0.11~P.

Габлица 9. Средняя кривая блеска КЗП 499

Фаза	m	n	Фаза	m	п	Фаза	m	n
0 ^p .0018	16.81	4	0 ^p .2187	15.24	10	0 ^p .6857	15.28	10
.0129	16.72	$\hat{2}$.2496	15.23	10	.7354	15.22	10
.0239	16.33	3	.3009	15.28	10	.8217	15.26	9
.0314	16.27	2	.3369	15.28	10	.8836	15.29	8
.0553	15.19	ī	.3605	15.29	10	.9076	15.24	3
.0716	15.20	$\tilde{2}$	4032	15.30	10	.9375	15.38	3
.0827	15.24	3	.4509	15.29	10	.9454	15.33	2
.0935	15.31	4	.4990	15.24	10	.95 88	15.62	3
.1270	15.20	10	.5779	15.26	10	.9804	16.47	3
.1758	15.27	iŏ	.6256	15.32	10	.9910	16.65	3

Моченты, использованные для улучшения рормулы.
 Ослабление блеска.

ЗВЕЗДЫ ТИПА RR ЛИРЫ

Изучаемая область неба сравнительно бедна звездами типа RR Лиры. Две из них детально исследованы нами.

ВН Возничего (Aurigae)

Открыл эту звезду и определил ее период Хофмейстер. Затем значение периода было уточнено Н. Перовой на основе старых московских снимков. Мы не учитывали указанные исследования, так как все старые московские снимки были заново измерены нами.

По средним сезонным кривым блеска определены уверенные моменты перехода через $12^{\rm m}.8$ на восходящей ветви кривой T ($12^{\rm m}.8$). Представление моментов следующее:

$T(12^{11}.8)$ JD	Е	0-C
2 432 943.416	0	0.000
7991.400	11068	.000
9386.573	14127	001
40293.279	16115	+.001

Таблица 10. Средние кривые блеска ВН Aurigae

Фаза	m	n	Фаза	m	n	Фаза	m	n
Московски	ие наблюде	ния —	серия Т					
0 ^p .010 .046 .095	12.79 12.26 12.29	2 4 4	0 ^p .243 .334 .379	12.66 13.01 12.96	7 5 5 5 5	0p.592 .678 .793	13.20 13.19 13.23	5 5 5 4
.125 .179	12.12 12.37	3 4	.463 .536	13.12 13.18	5	.862 .948	13.24 13.22	4 2
Московски		ния —						
0P.004 .020 .043 .067 .089 .116 .135 .161 .188 .200 .223 .241	12.86 12.64 12.40 12.18 12.18 12.16 12.25 12.33 12.38 12.30 12.47 12.45	4454555556554	0°P.298 .315 .330 .352 .374 .394 .420 .438 .463 .492 .523 .550	12.62 12.77 12.71 12.84 12.93 12.85 12.92 12.94 12.96 13.03 12.94 13.00	555555555565565	0P.613 .647 .675 .706 .735 .756 .779 .807 .844 .871 .908	13.13 13.08 13.12 13.05 13.14 13.16 13.24 13.18 13.23 13.20 13.26 13.20	555555554521
.268 О десские н	12.65 наблюдения	5 <i>Ka</i>	.591 мера № 5	13.00	5	.988	12.96	1
0 ^p .023 .078 .105 .137 .193 .277	12.68 12.33 12.28 12.29 12.50 12.67	3 3 3 5 5 5	0 ^p ·409 ·494 ·536 ·590 ·649 ·735	13.06 13.12 13.15 13.08 13.20 13.24	5 5 4 2 4 5	0 ^p .803 .832 .871 .924 .977	13.35 13.28 13.31 13.30 13.12	4 6 4 3 3

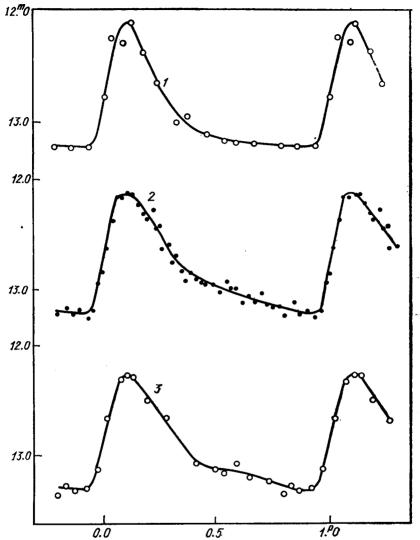


Рис. 5. Средние кривые блеска ВН Aurigae: / — Москва (серия Т); 2 — Москва (серия А); 3 — Одесса.

Уточненная с помощью полученных моментов формула имеет вид

$$T(12^{m}.8) = 2437352.416 + 0.45608821 \cdot E; P^{-1} = 2.1925583.$$

Относительно этой формулы вычислены возрасты наблюдений и построены три средние кривые блеска по старым и новым московским, а также по одесским наблюдениям. Интересно отметить, что разроз-

ненные данные, полученные по очень старым московским снимкам и по снимкам симеизской планетной коллекции, прекрасно удовлетворяют этой же формуле. Следовательно, ВН Возничего принадлежит к стабильным звездам типа RR Лиры. Средние кривые блеска приведены в табл. 10 и изображены на рис. 5.

При исследовании средних кривых блеска установлено, что максимум наступает через $0^{\rm p}.096=0.045$ суток после момента T ($12^{\rm m}.8$). Поэтому формула для предвычисления момента максимума

такова:

Max hel JD = $2437352.461 + 0.45608821 \cdot E$.

КЗП 501

Эта звезда оказалась очень трудной для исследования, так как обладает сильно выраженным эффектом Блажко. После отыскания приближенного значения периода были построены средние кривые блеска из наблюдений, выполненных в короткие интервалы, и определены моменты максимума блеска и величины максимального блеска. Последние оказались существенно переменными. В результате удалось найти исходные элементы:

Max hel JD =
$$2439060.541 + 0.539415 \cdot E$$
.

Для их уточнения мы привлекли также моменты усиления блеска, полная сводка которых представлена в табл. 11.

Таблица 11 Моменты максимумов и усилений блеска КЗП 501

№ п/п	1	Источник		М	Момент JD	Е	O-C	Bec
1 2 3 4 5 6 7	Симеиз; Москва; » »	усиление усиление усиление » » усиление	блеска блеска » »	14.1 14.1 13.7 13.9 14.0 13.8 13.9	2429688.217 32866.493 3301.190 3329.223 3740.279 6607.300 7582.576	17375 11483 10677 10625 9863 4548 2740	+0.022 + .054 019 035 015 + .006 + .017	1 1 1 1 1
8	=	» индивид. мум		13.4	7991.404	— 1982	033	4
9 10 11	»	усиление » средний	»	14.2 13.9 13.9	8017.323 8085.273 9060.552	- 1934 - 1808 0	.006.023.009	1 1 9
12 13 14 15 16 17 18	» »	мум » » усиление » средний	» »	13.4 13.5 14.0 13.4 13.5 13.2	9382.605 9415.498 9442.479 9743.490 9910.227 9932.245 40268.307	+ 597 + 658 + 708 + 1266 + 1575 + 1616 + 2239	+ .012 + .001 + .011 + .027 + .085 013 008	9 9 1 1 1 9
19	>>	мум »	>	13.7	0534.250	+ 2732	+ .003	9

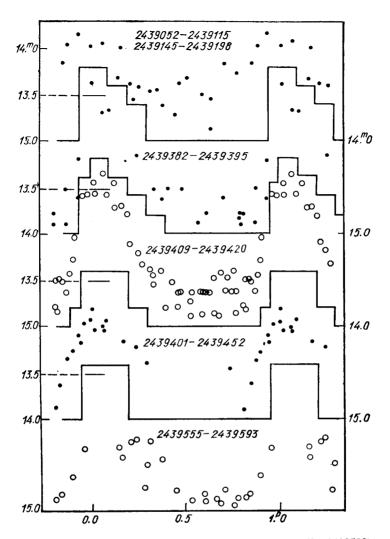


Рис. 6. К эффекту Блажко у звезды КЗП 501 (2439052—2439593).

Приведенная выше формула была улучшена по способу наименьших квадратов с учетом указанных в табл. 11 весов:

Max hel JD = $2439060.561 + 0.53941672 \cdot E$; $P^{-1} = 1.85385429$.

При этом шестнадцатый момент не принимался во внимание.

Указанные в табл. 11 остатки О — С вычислены относительно этой формулы.

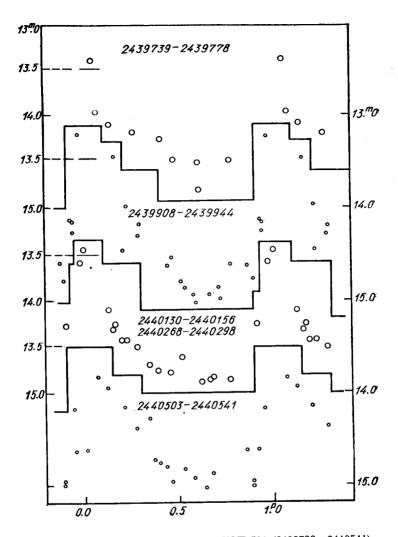


Рис. 7. К эффекту Блажко у звезды КЗП 501 (2439739—2440541).

Высота максимума и отклонения О—С изменяются в больших пределах. Попытки найти период эффекта Блажко приводят к значению $\Pi=179$ суткам, что напоминает эффект Блажко, найденный у RZ Лиры. К сожалению, материала недостаточно для вывода окончательного заключения.

Однако, так как период эффекта Блажко весьма велик, нами построены сезонные кривые блеска внутри интервалов длительностью до 30 суток (рис. 6, 7). Из этих рисунков видно, насколько сильно изменяется форма кривой блеска. На рисунках изображе-

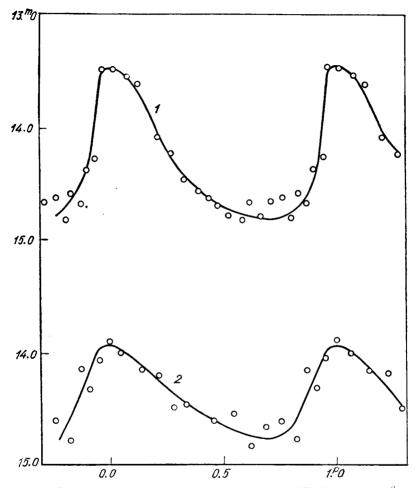


Рис. 8. Предельные формы кривой блеска звезды КЗП 501 по наблюдениям в интервалах:

ны все оригинальные наблюдения, сделанные на московских снимках.

Похожие кривые объединены в «предельные» средние. В выделенных интервалах наблюдения осреднены в соответствии с их возрастом (табл. 12, рис. 8). Мы видим, что эффект Блажко весьма существенно изменяет амплитуду. Наибольшая амплитуда блеска имеет пределы $13^{\rm m}.2-14^{\rm m}.9$, а наименьшая: $13^{\rm m}.9-14^{\rm m}.8$.

Таблица 12. Две «предельные» формы кривых блеска КЗП 501 по московским снимкам серии А

	cpnn /t							
Фаза	m	n	Фаза	m	n	Фаза	m	n
Наблюден	ия в инте	рвалах	2439382—	2439420 u	24399	08 243994	1	
0 ^p .025	13.47	3	0 ^p .450	14.64	4	0 ^p .768	14.62	5
.077	13.54	3	.484	14.70		.801	14.82	5
.135	13.61	5	.530	14.78	4 5	.836	14.58	4
.212	14.09	4	.589	14.83		.872	14.66	
.272	14.24	4 5	.618	14.66	4 4	.900	14.38	4 4 5 3
.332	14.46	4	.662	14.80	4	.939	14.28	5
.396	14.57	4	.713	14.67	6	.975	13.47	3
Наблюден	ия в инте	пвалах	2439052	2439115. 2	439441	—2439452		
	5—2 439 5			,				
0 ^p .005	13.90	3	0 ^p .349	14.48	4	0 ^p .761	14.63	4
.057	14.00	4	.461	14.63	3	.829	14.80	4
.145	14.16	4	.552	14.56	3	.877	14.16	3
.221	14.21	4	.618	14.86	3	.914	14.33	3
.286	14.51	4	.694	14.68	4	.954	14.06	4

полуправильные и неправильные звезды

Среди изученных нами звезд четыре принадлежат к этому типу.

GS Возничего (Aurigae)

Это медленно изменяющаяся полуправильная звезда типа µ Цефея. Как видно из рис. 9, на очень медленное колебание блеска наложены более быстрые волнообразные изменения. Можно полагать, что очень высокие максимумы произошли между моментами 2417500 и 2418500, а также вблизи 2429750 и 2433500. Последние два мак-

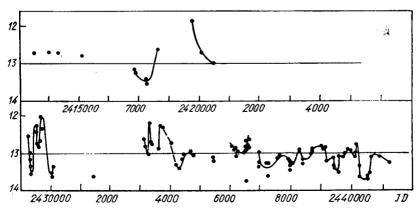


Рис. 9. Кривая блеска GS Aurigae.

симума отделены интервалом в 3750 суток, но новые наблюдения противоречат существованию такого периода. Приводим полный список всех наблюдавшихся моментов максимумов и минимумов:

Max JD	Цикл	Min	JD	Цикл
2427250:	2500	2417	7200	2100
9750	3750	,	9300	_
3 3500	1100	27	800:	1600
4600	1100	,	9400	1000
6650	1950	3	3050	
7650	1000		4350	1300
8300	650		6300	1950
8900	600		7 250	950
9850	950		8000	750
	9 50		9520	1520
40800				900
		4	0420	

Из этих данных видно, что продолжительность цикла изменяется в пределах от 600 до 1950 суток. Блеск звезды колеблется от $11^m.8$ до $13^m.8$.

КЗП 484

Это неправильная переменная, которая, как видно из рис. 10, изменяет блеск в пределах от $13^{\rm m}.9$ до $15^{\rm m}.2$, возможно, циклически.

КЗП 487

Данная звезда является полуправильной переменной с амплитудой от $14^{\rm m}.2$ до $14^{\rm m}.9$ (рис. 11). Моменты максимумов и минимумов определяются формулой

Это неправильная переменная звезда с малой амплитудой изменения блеска в пределах от $15^{\rm m}\cdot 2$ до $15^{\rm m}\cdot 7$ (рис. 12).

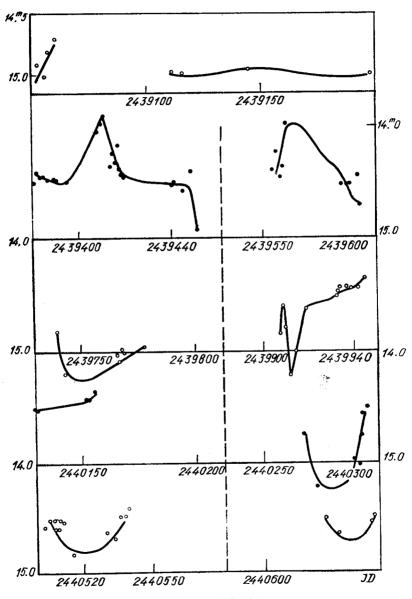


Рис. 10. Фрагменты кривой блеска КЗП 484.

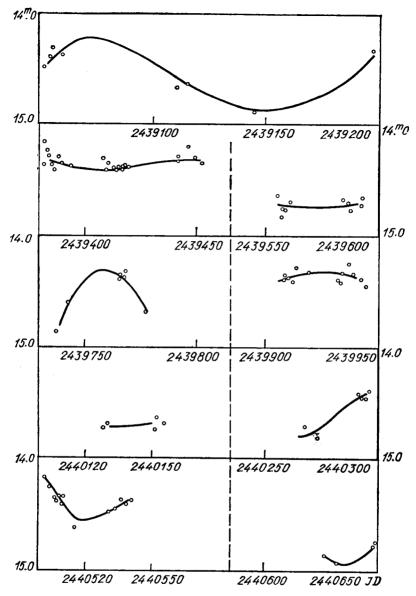


Рис. 11. Фрагменты кривой блеска звезды КЗП 487.

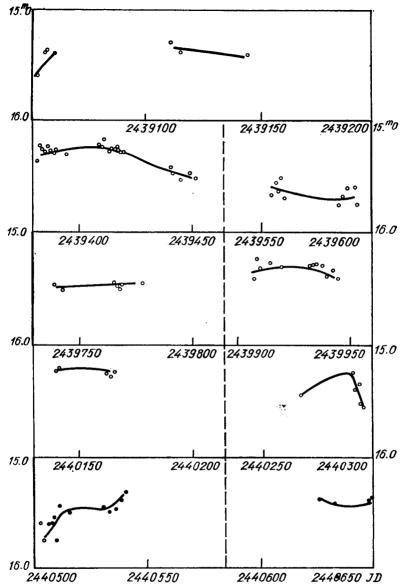


Рис. 12. Фрагменты кривой блеска звезды КЗП 494.

другие объекты

Помимо описанных выше звезд, наблюдались еще три: DN Возничего, КЗП 492 и 506. Результаты наблюдений помещены в табл. 13—18. Определенных выводов получить не удалось.

Таблица 13. Московские наблюдения звезд из созвездий Auriga и Taurus

Nº n/n	JD hel	ВН	СН	DN	EI	GS	GY	но	AP Tau	AS Tau
	243	· ·								
275	3184.380	12.94	15.71	13.75	14.68	12.57	_	13.48		12.46
293	3332.281	13.13	16.31	14.04	14.55	12.40		13.42		12.53
576	4038.305	13.06				12.74	-	13.50		12.46
1001	4681.466	13.11	15.71	14.23	<u></u>	12.97		13.29	_	12.43
1040	4769.299	12.90	15.71	14.10	14.40	13.05		13.48		12.43
1248	5433.446	12.88	_		-	13.07	_	13.42		12.62
1260	5461.306	_		_		13.07		_		_
4607	9052.411	12.55	14.59	14.10	14.78	12.80	13.23	13.19	14.34	12.33
4615	9055.423	13.08	14.55	14.01	14.57	12.94	13.14	13.68	14.25	12.33
4621	9056.417	12.18	14.65	14.01	14.50	12.97	13.25	13.63	14.26	12.33
4622	.455	12.25	14.55	14.00	14.59	12.97	13.24	13.65	14.32	12.33
4623	.491	12.52	14.78	13.97	14.50	12.87	13.31	13.35	14.25	12.29
4624	.527	12.75	14.66	13.94	14.46	12.92	13.31	13.40	14.28	12.33
4625	.567	12.89	14.96	13.84	14.50	12.97	13.14	13.40	14.28	12.33
4632	9060.405	13.05	14.67	14.12	14.81	12.80	13.43	13.64	14.32	12.43
4633	.442	13.36	14.70					13.68	14.23	12.36
4634	.487	12.33	14.61					13.68	14.28	12.48
4635	.531	12.16	14.70	13.84	14.50	12.87	13.51	13.61	14.25	12.33
4636	9060.566	12.22	14.96	13.84	14.56	12.83	13.24	13.70	14.25	12.33
4637	.600	12.36	14.70	14.03	14.56	12.87	13.14	13.69	14.60	12.29
4652	9111.359	13.01	14.70	13.97		12.80	13.14	13.42	14.20	12.62
4653	.407	13.17	14.70	13.74		12.97	13.37	13.48		12.43
4656	9115.388	13.01	14.70	13.79	14.50	12.87	13.23	13.65	14.16	14.34
4663	9145.335	12.16	14.61	13.79	14.50	12.88	13.73	13.45	14.18	12.33
4664	.370	12.21	14.65	13.79	14.50	12.83	13.80	13.63	14.18	12.33
4708	9198.358	12.86	14.70	13.74	14.50	13.19	13.14	13.40	14.20	12.48
4908	9382.481	12.25	14.61	13.74	14.82	13.13	13.53	13,42	14.20	12.33
4909		12.16	14.55	13.97	14.50	13.19	13.40	13.40	14.20	12.33
4910	.561	12.25	14.43	14.00	14.50	13.06	3.13.14	13.47	14.25	12.33
4915	9383 .568	12.89	14.55	13.95	14.42	13.01	13.25	12.95	14.25	13.90
4922		12.88	16.40	14.06	14.50	13.07	7 13.33	13.40	14.33	12.62
4928	9385.472	12.88	14.65	14.40	14.59	9 13.13	3 13.14	13.40	14.20	12.33
4929	.516	13.01	14.70	14.43	3 14.84	13.13	3 13.25	13.35	14.25	12.29
4930		13.10	14.50	14.12	2 14.76	5 13.10	13.27	13.21	14.22	12.33
4936	9386.507	13.36	14.70	13.98	14.42	2 13.10	13.24	13.14	14.30	12.36
4937		12.86	14.74	: 13.84	14.62	2 13.13	3 13.14	13.35	14.33	12.33
4940		13.13	14.59	13.94	14.62	2 13.10) 13.24	13.47	14.26	12.43 12.33
4941		12.84	14.74	13.84	1 14.69	9 13.19	9 13.14	13.55	14.26	12.53
4947		12.95	16.63	13.9	(14.6)	2 13.13	3 13.14	1 13.64	14.26 14.26	12.62
4948		12.95	16.55	14.10	J 14.42	2 13.00	0 10.14	1 13.47		12.43
4949	.573	13.01	16.45	14.0	1 14.6	2 13.13	9 13.14	4 13.63	14.26	13.20
4952		12.98	14.61	14.10	J 14.7	/ 13.13	9 13.00	8 13.45		13.61
4953		13.27	14.70	13.8	4 14.0	8 IJ.I.	3 13.14	4 13.45	14.22	14.19
4954		13.27	14.50	13.8	4 14.5	U 13.1	9 13.14 6 12 0	4 13.37	3 14.29	12.33
4958		13.36				2 13.1		4 13.43		12.00
4967		10.00	16.40	13.8	4			8 13.5		12.79
4974		12.86		13.9	4 14.5	U 13.1	U 13.1. E 12.0	4 13.49		12.79
4975		12.84	14.6	14.1	2 14.5	0 13.U	0 13.2 6 19 1	4 13.43		12.33
4976		13.02	14.5	14.4	U 14.5	9 13.1 0 12 1	0 13.1 6 19 9	4 13.60		13.03
4977		13.02	14.5	13.9	114.5	U 13.1	0 13.3 0 19 4	3 13.4		12.62
4978		13.16		13.8	4 14.0	O 13.1	ອ 10.4 ເຂ 19 9	0 13.4 1 13.3	5 14.49	
4985		13.27	15.0	5 13.9	9 14.0	N 13.2	O 10.0	0 13.4	3 14.41	
4986	6 .473	13.11	14.5	3.61	4 14.0	2 13.2	.0 13.3	U 13.4	U 17.71	10.10

№ п/п	JD hel	ВН	СН	DN	El	GS	GY	но	AP	AS
	243	,		•		·		,		
4987	9411.505	13.08	15.05	13.94	14.68	13.19	13.40	13.40	14.62	14.48
4988	.537	13.19	15.15	13.91	14.65	13.19	13.14	13.40	14.57	14.29
4989	.571	13.36	14.96	13.84	14.74	13.19	13.14	13.42	14.34	14.12
5002	9414.434	12.10	16.83	14.03	14.65	13.19	13.14	13.66	14.58	13.03
5003	.467	12.18	16.70	14.06	14.69	13.15	13.14	13.66	14.30	12.36
5004	.501	12.31	16.52	14.05	14.65	13.36	13.14	13.50	14.26	12.62
5005	.534	12.41	16.59	13.94	14.50	13.26	13.14	13.50	14.28	12.33
5006	.566	12.98	16.63	13.94	14.59	13.26	13.14	13.50	14.28	12.36
5007	.599	13.01	16.59	13.74	14.50	13.45	13.14	13.51	14.26	12.46
5014	9415.417	12.70	14.76	14.12	14.62	13.36	13.33	13.48	14.64	12.62
5015	.451	12.70	14.65	14.01	14.65	13.56	13.31	13.47	14.34	12.33
5016	.492	12.84	14.55	13.84	14.50	13.46	13.24	13.48	14.27	12.36
5017	.532	13.01	14.50	13.84	14.90	13.36	13.37	13.46	14.27	12. 3 6
5018	.567	12.99	14.55	13.73	15.19	13.36	13.14	13.60	14.26	12.36
5025	9416.457	12.95	14.61	14.03	14.50	13.46	13.24	13.35	14.29	12.33
5026	.490	13.16	14.55	13.73	14.50	13.36	13.14	13.24	14.20	12.36
5027	.523	13.17	14.70	13.84	14.65	13.26	13.37	13.22	14.26	12.36
5028	.555	13.27	14.50	13.84	14.63	13.36	13.24	13.30	14.30	12.3 6
5029	.588	13.27	14.66	13.97	14.42	13.36	13.33	13.25	14.26	12.48
5037	9417.459	13.27	14.70	13.74	14.75	13.31	13.37	13.40	14.32	12. 3 6
5038	.491	13.27	14.55	13.74	14.77	13.36	13.04	13.45	14.20	12.43
5039	.527	13.36	14.58	14.06	14.59	13.36	13.14	13.49	14.26	12.43
5040	.561	13.36	14.55	14.33	14.50	13.36	13.24	13.45	14.25	12.41
5041	.595	12.41	14.84	13.84	14.57	13.53	13.14	13.42	14.22	12.29
5048	9418.450	13.27	14.74	13.95	14.65	13.53	13.24	13.82	14.22	14.48
5049	.483	13.27	14.61	14.15	14.50	13.36	13.14	13.84	14.20	14.34
5050	.515	12.28	14.68	14.23	14.50	13.36	13.14	13.77	14.23	14.02
5051	.547	12.16	14.74	14.03	14.50	13.49	- 13.14	13.66	14.38	14.02
5052	.580	12.21	14.74	13.84	14.62	13.36	13.14	13.69	14.29	13.23
5053	.610	12.41	14.61	13.97	14.86	13.36	13.14	13.43	14.31	12.62
5057	9419.455	12.10	16.52	14.12	14.42	13.36	13.14	13.66	14.25	12.41
5058	.490	12.41		13.98	14.59	13.36	12.94	13.70	14.26	12.33
5059	.523	12.28	16.63	14.07	14.50	13.36	13.14	13.72	14.26	12.33
5060	.558	12.58	16.66	13.74	14.34	13.36	13.14	13.68	14.26	12.36
5061	.604	12.84	16.45	13.74	14.50	13.20	13.14	13.73	$14.22 \\ 14.26$	12.36 12.43
5063	9420.425	12.41		13.79	14.70	13.30	13.24	13.66		12.43
5064	.458	12.60	14.55	13.84	14.95	13.30	13.24	13.40	$14.22 \\ 14.22$	12.43
5065	.490	12.92	14.55	13.74	14.90	13.50	10.24	13.45	14.22	12.46
5066	.523	13.08	14.55	13.00	14.80	13.30	10.24	13.43	14.13	12.36
5067	.556	13.01		13.84	14.50	10.00	10.24	13.49	14.19	12.41
5068	.588	13.05	14.51	14.00	14.00	1 10.00	10.14	13.45	14.15	12.29
5085	9441.359	12.15	14.50	13.98	7 14.00	10.15	10.27	l 13.69 l 13.45	14.25	12.29
5086	.391	12.31	14.00	13.9	14.00	12.00	19.65	12.43	14.29	12.29
5087	.424	12.60		13.74	14.DU	10.22	12.94	13.43	14.23	12.77
5089	9442.383	12.89	1455	13.74	14.0	1 13.40 1 12 24	. 10.24 . 19 1/	13.55	14.26	12.62
5090	.415	13.01	14.50	13.84	14.00	12.30) 10.15 ; 12.07	13.43		12.33
5091	.448	12.95	14.00	13.74	14.0	7 13.30 5 12 50	10.24 12.09	13.37		12.33
5092	.480	13.08		13.8	1 14.0	10.00	3 10.U0 2 19 1/	5 13.40		12.33
5093	.513	13.13	14./(J 13.7	t 14./2	2 13.30	. 10.14 3.19.01	13.40	14.38	14.19
5099	9446.341	12.18	14.50	3 13./4	4 14.00) 10.30) 10.00	J 12.97	7 13.43 4 13.45		14.13
5100	.374	12.21	14.0	10.9	4 14.42 4 14 50	2 13.0	3 13 12 3 13 12	4 13.40		13.61
5101	.408	12.21	14.0	1 10.7°	1 14.03	12.4	5 13 1	4 13.43		12.43
5103	9449.382	12.89	10.3	t 10.0	4 14.0	7 10.4	J 10.1.	1 10.Tu	, 11.10	. 4. 10

№ п/п	JD hel	вн	СН	DN	El	GS	GY	но	AP	AS
	243	· · · · · ·								
5104	9449.414	13.21	16.45	13.74	14.65	13.36	12.94	13.43	14.67	12.36
5105	.447	13.36	16.59	13.74	14.50	13.57	13.02	13.43	14.56	12.33
5106	.483	13.36	16.55	13.74	14.42	13.53	13.24	13.22	14.54	12.33
5107	.518	12.66	16.58	13.84	14.50	13.36	13.14	13.33	14.49	12.33
5108	9452.574	13.08		13.84		13.53			14.28	12.33
5120	9555.289	13.27	14.70	13.74	14.34		13.31	13.25	14.20	-
5121	.323	12.84		13.74		_	13.23		14.20	
5122	.358	12.12		13.74		_	13.31		14.62	_
5125	9557.278	12.73		14.07			14.09		14.53	12.29
5126	.311	12.80		14.07		-	14.00		14.59	12.43
5127	.345	12.92		14.01			13.95		14.38	12.33
5132	9558.276	12.95		13.91					14.60	12.24
5133	.309	12.98	14.55			13.66			14.45	12.33
5134	.343	13.19		13.91			13.43	13.47	14.33	12.24
5140	9559.273	13.04		13.84					14.38	12.33
5141	.309	13.08	14.61			13.36			14.21	12.24
5142	.342	13.01	14.65	13.79				13.43	14.23	12.33
5148	9561.273	12.28		13.99					14.45	14.48
5149	.309	12.18	14.99			13.53			14.25	14.36
5150	.343 9585.293	12.51		14.03					14.28	13.95
5153		13.10	14.97			13.16			-	12.43
5160 5167	9586.287 9587.276	13.17 12.28	14.90 15.06	14.41		13.16	12.40	13.42	14.23	12.33
5174	9588.272	12.20		13.69					14.26	12.33
5178	9589.281	13.07	10.00	14.03			13.14		14.20	13.15
5185	9592.267	12.92	15.12			13.00			14.30	12.43
5192	9593.289	12.66		13.67	14 79	13.00	13.31	13.70	14.38	12.33
5444	9739.477	13.08		13.84					14.31	12.48
5456	9743.490	13.08	15.03			13.10			14.71	12.33
5480	9766.534	12.08		13.71					14.33	12.62
5487	9767.527	12.66	14.99	13.69	14.50	12.97	13.25	13.43	14.22	12.43
5490	9768.494	12.80	14.95	13.91	14.50	12.97	13.24	13.37	14.38	12.48
5491	.534	12.98	15.16	13.84	14.69	13.05	13.14	13.35	14.26	12.82
5498	9769.498	12.98		14.10					14.29	12.43
5512	9778.566	12.89		13.91					14.23	12.62
5513	.600	12.94		: 13.97					14.23	12.43
5514	9908.232	13.08		13.99					14.55	12.48
5515	.272	13.27		14.05					14.26	12.33
5516	9909.301	12.15		13.99					14.22	12.62
5517	.340	12.63		13.84					14.26	12.62 12.62
5518	9910.227	12.16		13.91					14.26	
5519 5520	.264 .300	12.21 12.75		13.90				13.40	14.26 14.29	12.48 12.62
5524	9912.244	12.75		13.74					14.29	12.02
5525	9914.240	13.08		13.84					14.22	12.48
5525 5526	.274	12.75						13.39	14.20	12.43
5527	.307	12.79	15.03					13.38	14.26	12.62
5541	9919.281	12.89						13.42	14.20	12.96
5544	9932.245	12.89	15.07					13.43	14.34	12.62
5546	9933.267	13.05						13.43		12.48
5547	.301	13.27	15.39					13.63		12.48
5549	9934.262	13.05						13.43		12.62
5550	.293	13.08						13.55	14.30	12.62
บออบ	.293	13.08	10.20	10.74	14.50	12.9/	10.01	15.55	14.00	12.02

№ п/п	JD hel	вн	СН	DN	EI	GS	GY	но	AP	AS
	243									
5563	9937.266	12.84	15.25	14.07	14.69	12.97	13.40	13.47	14.38	12.89
5578	9939.237	13.05	15.16	13.84	14.75	13.02	13.33	13.49	14.46	12.62
5602	9942.232	12.89	15.03	14.12	14.72	12.97	13.14	13.45	14.64	12.62
5641	9944.239	12.98				12.97			14.26	12.48
	244							10.11	11.20	12.10
6106	0130.582	12.25	15.12	13.65	14.59	13.10	13.24	13.50	14.23	12.48
6111	01-31.585	12.98	15.16	13.94	14.50	13.02	13.31	13.61	14.23	12.62
6119	0152.430	12.18				13.02			14.29	12.62
6127	0153.526	12.98	15.16	14.10	14.62	13.02	13.14	13.70	14.33	14.48
6132	0156.532	12.21	15.16	13.94	14.86	12.99	13 25	13.40	14.38	12.62
6143	0268.267	12.25	15.23	13.84	14 75	13.36	13 14	13.49	14.36	12.74
6144	.314	12.72	15.39	13.94	14.61	13.36	13 14	13.49	14.60	12.96
6157	0273.293	12.64	15.26	13.84	14 72	13.36	13 14	13.44	14.23	12.36
6182	0290.228	12.84	15.03	13.74	14 92	13.66	13.57	13.49	14.29	12.62
6183	.260	12.88	14 95	13.84	14.75	13.67	13.62	13.47	14.29	12.31
6191	0292.261	13.27	14 97	13.91	14 60	13.46	13.14	13.47	14.23	12.36
6192	.293	13.36				13.62			14.27	12.31
6203	0293.277	12.79	15.00	13.84	15 16	13.49	10.14	13.40	14.27	12.31
6204	.310	12.25	15.20	19.04	14.89	13.66	10.14	10.40	14.23	12.62
6213	0294.257	12.28	14.61	12.24	14.02	13.66	14.06	10.49	14.23	12.02
6214	.291	12.39		12.04	14.00	13,66	12.00	10,40	14.22	12.74
6228	0295.273	12.85	14.70	10.04	14.00	13.66	10.91	10.40	14.20	12.62
6696	0503.567	12.16				13.79			14.20	
6713	0505.486	12.10	14.01	19.74	14.00	13.75	10,20	10.40		12.58
6724	0505.460	13.08	14.01	10.74	14.60	13.75	13.27	10.04	14.62 14.23	12.62
6733	0508.541	12.96	14.74	14.14	14,05	13.73	10,29	10,00		12.46
6743	0509.548	12.35	14.50	19.14	14.00	13.79	10,00	10.40	14.22	12.38
6753	0510.552	12.88	14.00	14.00	14.40	13.62	10.10	10.04	14.22	12.43
6762	0510.532	12.88							14.18	12.53
6778	0516.594	13.03	16.05	19.07	14,50	13.66 13.66	10.02	13.40	14.38	12.48
6792	0531.490	12.84	16.50	13,00	14.50	13.66	10.00	10.07	14.26 14.25	12.50 12.53
6793	.523	12.96	16.02	19.79	14,00	13.66	10.10	10.04	14.25	12.53
6800	0534.462	13.06	14.70	10.70	14.40	13.62	10.20	10.00		
6801	.493	13.13	14.70	14.04	14.40	13.67	10.24	10.09	$14.22 \\ 14.20$	12.53 12.53
6807	0537.402	12.41	14.60	12 00	14.00	13.66	12.20	10,42	14.20	12.53
6808	.435	12.72	14.01	14.93	14.90	13.66	13,23	10.40	14.23	12.53
6822	0539.415	13.01	14.01	12.00	14.60	13.57	12.04	10.40		12.53
6823	.449	13.06	14.60	10.54	14.00	13.62	10.24	10.09	14.25	
6829	0541.455	12.35	15.53	14.16	14.50	13.62	12.20	10.0/	14.28	12.50
6830	.488	12.35				13.62			14.54 14.26	12.53 12.53
6839	0626.328	12.41	14.65	14.04	14.01	13.52	12.23	13.00		
6840	.360	12.41	14.65	14.02	14.00	13.62	12.23	10.40	14.23	12.48
6845	.300 0648.247	13.06	14.00	12.10	14.00	13.02	10.24	10.40	14.25	12.55
6846	.275	12.96				13.24			14.20	13.52
6859	0649.280	12.96				13.12			$14.28 \\ 14.22$	13.13
6860	.314	13.03								12.53
0000	.314	13.03	14.00	13.04	14.40	13.02	13.24	13.43	14.29	12.53

Таблица 14. Московские наблюдения GY Aurigae и AP Tauri (дополнение к табл. 13)

	•						
№ п/п	JD hel	GY	AP	№ п/п	JD hel	GY	AP
	243			0000	243	13.14	
534	3951.448	13.14	14.34	2922	7637.456		
554	3 953 .4 97	13.61	14.23	3687	8400.252	13.91	
1011	4683.400	13.37	14.27	3954	8645.4 86	13.14	-
1019	4684.457	13.15	14.23	3955	.523	13.31	_
1783	6521.323	13.14		3971	8650.484	4 3.05	14.32
1796	6529,640	13.05		3972	.518	13.23	14.27
2732	7287.399	13.37		4167	8827.299	13.14	
			_	1101	244		
2733	.441	13.14		CODE	0618.284	13.23	14.25
2918	7637.271	13.14		6835	0010.204	10.20	14.20
2920	.366	13.14					

Таблица 15. Московские наблюдения на снимкаж S и Т

3 n I					
JD hel	ВН	GS	GY	НО	AS Tau
241					
3549.489	13.15	12.71			
4009.298	12.84	12.71			
4306.342	12.61	12.71			
5108.299	13.15	12.79	_	_	_
6869.189	12.88	13.20	13.15		12.43
6901.251	13.20	13.27	13.25	13.69	
7233.187	13.15	13.46	(13.91	13.66	_
7262.233	12.27	13.72?	`13.23		12.52
7617.310	13.15	12.62	13.30	13.66	
8001.247	_				12.43
8741.256	13.06	11.86		13.45	12.55
9062.316	13.06	12.71		13.35	12.53
9447.252		13.00			13.61
242					10.40
9286.322	13.19	12.57	_	13.51	12.43
9335.333	12.22	13.02		13.63	12.52
9336.368	13.19	13.13		10.51	12.51
9342.310	13.13	13.36		13.51	13.02
9365.257	13.16	13.53		10.00	13.28 12.80
9558.576	13.16	12.43	13.15	13.69	12.60
9559.514	13.16	12.29	13.15	13.19	12.52
9588.501	12.34	12.73	13.15	13.35	12.51
9615.349	12.31	12.81	13.01	13.45	12.43
9688.217	13.23	12.65	13.32	13.44 13.49	12.51
9715.257	12.48	12.33	10.15	13.49	13.45
9720.283	12.27	12.04	13.15	13.14	12.52
9722.282	13.20	12.04		15.14	12.02
243	10.00	10.54			
0072.235	13.20	13.54	13.15	_	_
0073.305	11.92	13.62	15.10	_	

рооолжение	таол. 13) 			
JD he	вн	GS	GY	но	AS Tau
243					
0079.327	13.06	13.36	_	_	_
0103.285	13.20	13.36		_	
1475.271	_	13.62			12.51
3177.472	12.58	12.39	13.29	13.66	12.45
3178.487	13.06	12.79	13.00	13.61	12.43
3189.408	13.04	12.79	13.15	13.48	12.71
3212.450	13.27	12.93		13.42	12.45
3214.539	13.13	12.79		13.45	12.45
3301.190	13.07	13.07	13.15	13.40	12.87
3329.223	12.21	12.04	13.15	13.20	14.05
3351.264	12.64	12.70		13.42	12.43
3357.228	12.72	12.57	13.15	13.45	
3360.249	_	13.04			12.78
3360.277	12.91	12.79	_	_	12.53
3360.303	12.19	12.77		, 	12.62
3361.308	12.91	12.74	_	13.68:	12.51
3362.296	13.04	12.71		13.47	12.47
3381.280	12.19	12.77		13.55	12.52
3689.269	12.91	12.81		13.45	12.52
3708.259	_	12.22	13.15	13.45	
3709.343		12.33		13.47	
3711.300	_	12.22		13.48	_
3718.325	12.34	12.33		13.63:	12.5 3
3740.279	12.29	12.33			13.51
3742.270	13.06	12.26			12.52
4332.436	13.13	13.36	13.29	13.49	
4426.270	12.62	13.17			12.53
4480.252	13.33	13.04		_	12.52
5431.526	13.15	13.14			
5540.245	13.11	13.20	_		12.53.

JD hel	m	JD hel	т	JD hel	т
BH Aurigae					
243		243		243	
2922.230	13.13	2943.464	12.18	3003.326	13.13
.265	13.19	.514	13.30	3005.353	13.33
.296	13.20	2950.335	12.27	3006.318	13.20·
.329	13.23	.445	12.50	3183.422	12.7 7
-417	13.23	2967.237	12.72	3214.513	12.98
.542	12.87	.289	12.91	3357.328	13.20
2943.197	13.33	2974.334	13.13	3358.366	
.254	13.30	.378	13.23	3360.329	
.419	12.67	2977.417	13.20	3362.323	13.15

JD hel	m	JD hel	m	JD hel	m
КЗП 501			*****		
241 6869.189 242 9688.217 243 3177.472 3178.487	14.53 14.13 14.82 14.62	243 3189.408 3212.450 3301.190 3329.223 3351.264 3357.228	14.62 14.92 13.75 13.88 14.53 14.53	243 3708.259 3709.343 3718.325 3740.279 4426.270	14.62 14.22 14.22: 13.98: 14.62
<i>КЗП 506</i> 242 9558.576 9559.514	13.98 14.06	242 9722.282 243	13.89	243 3189.408 3212.450	13.98 14.31?
9688.217 9720.283	14.20 13.71	3177.472 3178.487	13.61 13.70	3301.190	14.06

Таблица 16. Одесские наблюдения

	то. од							
JD hel	ВН	GS	GY	НО	ASTau	КЗП 475	КЗП 501	КЗП 506
243 6084.574	12.32	12.82	13.04	13.50			_	_
6141.490	13.11	12.89	12.77	13.52			_	
6163.489	12.64	12.87	13.04	13.31	_			
6202.452	13.24	13.02	12.97	13.44	12.53	_	_	13.70
6213.333	13.10	12.93	13.37	13.46	12.43		14.70	14.23
6245.241	13.01	12.96	_		_			_
6252.230	13.19	12.91	13.23	13.19	_		_	13.62
6257.272	13.43	12.94	13.04	13.15	_		_	13.77
6274.261	12.25	12.91	13.54	13.35	12.53	_	14.88	13.74
6466. 572	13.35	12.91	-				_	_
6468.577	12.25	12.80	13.53	13.48	12.46	_	14.84	13.67
6487.520	13.19	12.80	12.97	13.32	_		-	
6488.519	13.35	12.80	12.94	13.35			_	_
6489.490	13.07	12.82	13.61:	13.42	_	_		
6495.580	13.04	12.89	13.00	13.33		-		13.53
6498.564	13.15	12.80	12.97	13.40	12.62	_	14.62	13.52
6518.470	13.08	12.70	13.78	13.25	12.31		14.62	14.07
6526.504	12.27	12.85	13.29	13.18	12.36		14.41	13.62
6541.405	13.43	12.81	13.29	13.37	12.53	-	14.81	13.52
6542.412	12.64	12.87	13.06	13.29				13.56:
6544.457	13.04	12.90	13.29	13.36	13.44	_	14.88	13.56
6555.424	13.17	12.80	13.57	13.39	12.43		14.94	13.73
6583.339	13.11	12.75	13.40	12.97			14.62	13.73
6604.396	13.11	12.80	13.19	13.47	12.46	_	14.54	14.06
6607.300	12.84	12.74	13.22	13.42	13.95		13.79	13.68
6608.307	13.04	12.68	13.02	13.40	12.53	14.10	14.25	14.05
6933.408	12.96	12.96	13.31	13.33	12.41	14.10	14.80	13.61
6959.357	12.55	13.31	13.31	13.36	12.43	14.02	14.93	13.62
6964.326	12.27	13.25	_	13.50	12.43	14.02	14.54	13.62

JD hel	ВН	GS .	GY	НО	AS Tau	КЗП 475	КЗП 501	КЗП 506
243	10.10	10.05			10.41		14.10:	(13.98
7207·599 7227.620	13.19	13.25 13.65		13.07	12.41 12.38	_		(13.36
7248.307	13.27	13.25	13.04	13.41	12.46	13.96	14.79	13.51
7292.431			_		12.38	_		
7582.576	13.20	13.12	13.23	13.50	13.71	13.96	13.93 14.47	13.56
7637.484	13.20	13.06	13.27	13.37 13.44	12.53 12.29	14.02	14.47	13.80
7961.520 7969.566	13.20	13.20 13.22	13.40	13.44	12.38	14.10	14.55	13.75
7973.576	13.35	13.18	13.07	13.38	12.38	14.10	14.30	13.73
7974.568	12.33	13.53	13.32:	13.23	12.36	14.02		13.56
7975.574	13.07	13.31	13.31	13.38	12.33	14.10	14.88	14.03
7991,259		13.57		13.42	12.48	_	_	13.70
.284 .309	10.05	13.67 13.57	13.71:	13.44 13.46	12.41 12.43	_	_	(13.98 14.18
.309 .358	13.35 13.43	13.62	13.71:	13.52	12.43	_	14.78	13.98
.383	13.17	13.31	13.22	13.44	12.48	14. 3 3	13.53	14.09
.408	12.67	13.27	13.28	13.46	12.53	14.10	13.38	14.22
.432	12.25	13.25	13.22	13.43	12.46	14.20	13.40	14.11
.456	12.37	12.25	13.25	13.42	12.62	14.33	14.07 14.38	14.17 13.70
.481 .504	$12.36 \\ 12.57$	13.25 13.36	13.0 6	13.42 13.49	$12.48 \\ 12.48$	14.33	14.36	15.70
.528	12.57	13.41		10.43	12.41	_	-	
8017.319	13.35	13.07	13.83	13.42	12.38	14.02	14.16	14.22
.343	13.20	13.31	13.83	13.40	12.38	14.10	14.17	14.11
8045.327	12.41	13.27	10.00	13.42	12.48 12.38	14.10	14.47 14.41	13.74
8084.275 8085.273	13.35	13.25 13.25	13.32 13.49	13.40 13.34	12.36	14.10	14.88	13.73
8086.272	12.74	13.31	13.22	13.43	12.36	13.96	14.62	13.65
8319.570	13.20	12.91	13.06	13.31	12.46	14.10	14.62	13.65
8405.394	13.24	13.18	13.14	13.43	12.46	13.96	14.62 14.56	13.56
8406.371	13.35	13.16	13.23 13.14	13.43 13.03	$12.62 \\ 12.46$	14.26	14.88	13.67 13.62
8411.331 8707.542	13.20 12.61	13.25 12.99	13.14	13.03	12.46	13.96	14.88	13.86
8727.442	13.20	12.96	13.25	13.39	12.43	13.96	14.80	13.50
8732.470	13.20	12.93	13.14	13.22	12.53	14.10	14.88	13.43
243	10.40		10.14		12.38			
8796.306 8811.236	13.43	·	13.14		12.30	_	_	
9029.597	_	12.80		13.47	12.38			_
9055.514	12.29	12.91	13.14	13.39	12.46	14.10	14.54	13.62
9059.609	12.25	12.99	13.06	13.33	13.90	14.02	14.54	13.61
9067.582	13.17	12.85	13.15	13.47	12.53		14.36	13.80
9495.36 0 244	13.15	_		-				
0183.479		12.77	_	-	_	_		_
0517.589	13.12	13.62		13.36	_			-
0622.296	13.07	-		13.25	-	_	_	_
0868.582	13.05	12.16	_	12.05		_		13.62
0968.316 0976.301	12.49 12.98	13.16 13.18		13.25 13.25		_		13.02
1253.545	13.15	13.16		13.25			_	_
1254.549	13.15			13.47		-		_

	10%. 10				
JD hel	<i>m</i> .	JD hel	m	JD hel	m
КЗП 492	-				
243		243		243	
6933.408	13.95	7991.284	14.26	8085.273	14.09
6959.357 6964.326	14.15 14.87:	309	14.26	8086.272	14.04
7207.599	14.23	.358 . 383	14.26 14.21	8319.570	14.09
7248.307	14.28	.408	14.21	8405.394 8406.371	14.09 14.18
7582.576	14.15	.432	14.21	8411.331	14.18
7637.484	14.15:	.456	14.28	8707.542	14.04
7961.520	14.15	.481	14.28	8727.442	14.04
7969.566	14.15	.504	14.57	8732.470	14.28
7973.576	14.12	8017.319	14.04	9055.514	14.28
7974.568	14.26	.343	14.09	9059.609	14.12
7975.574	14.15	8045.327	14.12	9067.582	14.18
7991.259	14.15	8084.275	14.09		
GY Aurigae					
243		243		243	
6286.258	13.14	6900.548	13.06	8296.575	13.02
6499.568	13.22	6933.375	13.02	8297.563	13.14
6526.476	13.29	6959.320	13.33	8319.543	13.22
6528.524	13.37	6960.312	13.31	8374.471	13.28
6542.379	12.82	6964.290	13.57:	8378.436	13.32
6544.430	13.49	6979.227	13.14	8405.370	13.02
6546.380	13.02	7338.320	13.02	8407.340	12.92
6549.382	13.14	7582.548	13.07	8411.304	13.14
6579.363 6583.309	13.29 13.14	7637.430 7672.374	12.89 13.07	8441.332	13.81
6606.283	13.14	7943.583	13.24	8671.572 8707.514	13.29 13.23
6607.269	13.14	7961.496	13.14	8727.414	12.92
6608.272	13.28	7969.541	13.24	8732.442	12.92
6612.318	13.14:	7973.551	13.02	8736.414	13.14
6844.567	13.14	7974.542	13.24	9055.489	13.06
6855.615	12.95	8292.558	13.28	9766.590	13.14

Таблица 17. Наблюдения на симеизских планетных снимках

JD hel	m	JD hel	m	JD hel	m
BH Aurigae					
241		242		242	
9127.295	12.96	4448.47 6	13.06	8167.393	12.87
242		5922.348	13.00	9632.309	12.82
1194.586	12.67	5940.263	12.74	243	
1195.316	13.20	6306.563	13.00	3627.351	13.19
.386	12.54	7041.378	13.03	3629.429	12.30
3167 . 267	13.26	7779.569	12.99	4724.503	12.62

JD hel	m	JD he!	m	JD hel	m
GS Aurigae	<u> </u>		<u> </u>		
241 9127.295 242 1194.487 1195.316	13.18 12.73 13.12	242 5922.348 5940.263 5941.265	12.92 12.46 12.43	242 9632.309 243 3238.518	12.66 12.32
.386 3387.561 3761.267 4448.476	13.12 13.04 12.81 12.76 12.78	6306.563 7041.378 7398.565 7779.569 8167.393	13.12 12.70 12.57 13.26 12.36	3627.351 3629.429 4724.503	12.08 12.37 13.18
GY Aurigae					
242 1194.487 1195.386 3761.267 4448.476 4469.378 5918.384 5922.348	13.19 13.26 13.15 13.19 13.23 13.23 13.28	242 5940.263 5941.265 6306.563 6309.557 6652.567 7041.378 7398.565	13.15 13.23 13.15 13.15 13.12 13.15 14.11	242 8167.393 8845.568 9632.309 243 4724.503	13.06 13.12 13.12 13.10
AP Tauri					
242 1194.487 1195.386 4469.378 5940.263 5941.265	14.29 14.26 14.51 14.28 14.28	242 7398.563 8167.393 9228.388 9611.302	14.28 14.30 14.26 14.27	243 2866.493 3658.328 4719.339 4724.503 4725.456	14.27 14.27 14.61 14.36 14.20
AS Tauri					11.20
242 0844.570 1194.487 1195.386* 5940.263 5941.265 6306.563	12.50 12.44 12.53 12.53 12.53 12.50	242 7041.378 7398.565 7779.569 8167.393 8512.503 8894.333	14.16 12.58 12.46 12.53 12.53 12.53	243 2866.493 3627.351 3629.429 4719.339 4724.503	12.62 12.50 12.58 12.53 12.53
КЗП 4 75					
242 1194.487 1195.386 4469.378 5940.263	14.18 14.10 14.06 14.10	242 5941.265 7398.565 8167.393 9611.302	14.10 14.31 14.15 14.27	243 2866.493 3658.328 4719.339 4724.503	14.23 14.38 14.20 14.54
KЗП 501					
242 0870.239 1194.487 1195.316	14.15: 14.50 14.43	242 5922.348 5940.263 5941.265	14.78 14.18 14.45	242 8167.393 243 2866.493	14.91 14.08
.386 3387.561 4448.476 4469.378	14.56 14.84 14.94 14.52	6306.563 7041.378 7398.565 7779.569	14.27 14.54 14.70 14.82	3629.429 4724.503	14.73 14.88

Табли	ца 18. М	1осковс	кие на	блюден	ия запо	дозрен	іных зі	везд (но	мера п	о КЗП)
№ п/п	JD hel	475	484	487	490	492	494	499	501	506
	243									
275	3184.380	_	14.59	14.68	15.03		15.52	(16.64	14.87	13.80
293	3332.281		14.62	14.68	15.03	-	15.52	15.19	14.89	13.60
576	4038.305	_		14.86			15.52	15.19	14.88	13.71
1001	4681.466		15.03	14.66	-		15.52	15.33	14.90	14.07
1040	4769.299		14.88	14.68	15.03	_	15.52	16.43	14.90	13.73
1248	5433.446	_		. —	<u></u>		15.50	15.19	14.90	14.15
4607	9052.411		14.97	14.48	14.63	14.79	15.59	15.33	13.96 14.39	13.52 13.56
4615	9055.423	14.63	15.04	14.39	14.76	14.58	15.38	15.72 15.19	14.45	13.56
4621	9056.417	14.52	14.82	14.24	14.63	14.71 14.74	15.37 15.25	15.19	14.62	13.63
4622	.455	14.29	14.88	14.24 14.24	15.41 15.29	14.47	15.23	15.19	14.72	13.63
4623	.491	14.10	14.88 14.70	14.42	15.36	14.79	15.37	15.19	14.31	13.63
4624	.527	14.02 14.40	14.82	14.39	15.03	14.71	15.44	15.19	14.49	13.56
$\frac{4625}{4632}$.567 9060.405	14.10	14.59	14.33	14.63	14.71	15.38	15.33	14.16	13.63
4633	.442	14.10	14.82	14.44	15.03	14.47	15.38	15.33	14.27	13.63
4634	.487	14.10	14.70	14.44	15.03	14.28	15.38	15.44	14.16	13.66
4635	.531	14.10	14.75	14.44	16.39	14.47	15.38	15.33	13.84	13.70
4636	.566	14.10	14.77	14.37	17.12	14.78	15.38	15.10	13.96	13.98
4637	.600	14.10	14.70	14.24	17.12	14.47	15.37	15.26	13.93	13.84
4652	9111.359	14.10	15.03	14.70	16.04	14.71	15.29	15.26	13.99	13.56
4653	.407	_		14.64		14.47		15.10	14.40	13.70
4656	9115.388	14.10	15.03	14.64	14.90	14.87	15.37	15.19	14.87 14.34	13.56 13.48
4663	9145.335	-	15.03	14.87	16.99	14.47	15.38	15.18 15.33	14.39	13.46
4664	.370	14.00	14.92	14.89 14.34	16.99 14.90	14.74 14.91	15.41	15.33		13.98
4708	9198.358	14.36 14.10	15.04 14.70	14.43	15.17	14.37	15.37	15.26	14.79	13.79
4908	9382.481	14.10	14.76	14.33	14.90	14.67	15.31	15.26	14.51	13.63
4909 4910	.525 .561	14.10	14.33	14.34	15.29	14.47	15.41	15.33	14.21	13.48
4915	9383.568	14.10	14.44	14.17	15.03	14.47	15.22	15.26	14.79	13.70
4922	9384.517	14.10	14.44	14.24	15.17	14.47	15.25	15.42	14.87	14.04
4928	9385.472	14.10	14.44	14.31	16.70	14.37	15.25	15.33	14.52	13.56
4929	.516	14.10	13.89	14.38	16.99	14.67	15.25	15.19	14.52	13.63
4930	.557	14.36	14.04	14.16	16.70	14.47	15.27	15:33	14.51	13.74
4936	9386.507	14.10	14.24	14.34	15.03	14.59			14.16	
4937	.576	14.10	14.24		14.76	14.47	15.22		14.62 13.38	
4940	9387.460	14.10	14.35		14.76		15.25 15.27	15.19		
4941	.503	14.10	14.55		14.76 14.76		15.27	15.23		
4947	9389.499	14.10 14.10	14.44 14.51	14.35	14.70			15.26		
4948 4949	.535	14.10	14.44		14.76					
4949	.573	14.10	14.51	14.39	14.90					
4953	9390.477 .529	14.10	14.51		14.90				14.62	14.11
4954		14.10	14.44						14.83	13.98
	.570									
4958	9395.579	14.27	14.51							
4967	9409.470	14.10	14.04		15.03		15.21			
4974	9410.430	14.10								
4975	.469	14.10	13.89							
4976	. 505	14.02								
4977	.541	14.02	14.04	14.39	14.90					
4978	.574	14.10								
4985	9411.440	14.10	13.45	14.34	15.17	14.28	3 15.22	15.12	14.62	2 13.82

Продоло	кение таол	. 10			 -	- 1	1			
№ п/п	JD hel	475	484	487	490	492	494	499	501	506
	243									
498 6	9411.473	14.10	14.16	14.44	15.03	14.47	15.21	15.19	14.62	13.98
4987	.505	14.10	14.04	14.31	14.90	14.47	15.10	15,19	14.62	13.98
4988	.537	14.10	14.16	14.34	14.90	14.47	15.18	15.33	14.48	13.52
4989	.571	14.02	13.67	14.31	15.17	14.78		15.28	14.49	13.63
5002	9414.434	14.10	14.16	14.41	14.90	14.67	15.25	15.33	13.58	13.70
5002	.467	14.10	14.24	14.44	15.17	14.47	15.21	15.27	13.58	13.70
	.501	14.10	14.27	14.41	15.03	14.47	15.31	15,21	13.71	13.56
5004	.534	14.10	14.35	14.41	15.03	14.58		15.21	14.10	13.56
50 0 5			14.51	.14 30	15.03	14.37	15.25	15.21	14.31	13.63
5006	.566	14.10	14.51	14.39 14.36	14.90	14.67	15.25	15.27	14.52	13.62
5007	.599	14.10		14.39	15.03	14.47		15.21	14.51	13.63
5014	9415.417	14.27	14.24	14.39	14.90	14.83		15.17	14.04	13.56
5015	.451	14.10	14.16		14.90	14.59		15.24	13.58	13.70
5016	.492	14.10	14.27	14.41	14.76	14.47		15,33	13.36	13.67
5017	.532	14.10	14.27	14.41				15,26	13,46	13.56
501 8	.567	14.10	14.27	14.43	14.90	14.86		15.33	14.62	13.84
5025	9416.457	14.10	14.04	14.38	15.03				14.02	13.70
5026	.490	14.27	14.35	14.43	15.33				14.27	13.63
5027	.523	14.10	14.44	14.36	15.79				13.58	13.64
5028	.5 55	14.20	14.35	14.38	16.25		15.25			
5029	.588	14.10	14.35	14.41	17.12			15.18	13.45	13.70
5037	9417.4 59	14.10	14.44	14.39	15.03			15.20	14.62	13.63
5038	.491	14.10	14.24	14.38	15.03				14.42	13.74
5039	.527	14.27	13.89	14.37	15.17			15.20	14.39	13.84
5040	.561	14.25	13.89	14.41	15.03				14.49	13.98
5041	.595	14.27	14.33	14.43	14.90				14.43	13.63
5048	9418.450	14.10	14.24	14.34	15.03				14.62	13.82
5049	.483	14.10	14.44	14.38	15.17					13.70
5050	.515	14.10	14.24	14.35	15.03					13.63
5051	.547	14.10	14.44	14.43			7 15.37	15.18		13.70
5052	.580	14.10	14.44	14.38	15.17	14.67	7 15.22	15,33	14.62	13.70
5053	.610	14.02	14.44	14.37	15.03			15.26		13.84
5057	9419,455	14.02	14.44	14.38	16.85				14.42	13.63
5058	.490	14.27	14.44	14.38						13.63
5059	.523	14.33	14.33	14.39	16.13					13.70
5060	.558	14.27	14.44	14.38	15.41	14.47	7 15.27	7 15.23		13.63
5061	.604	14.10	14.44	14.31				2 15.20		13.70
5063	9420.425	14.10	14.51	14.37						13.56
5064	.458	14.20	14.44	14.39						13.63
5065	.490	14.10	14.44							13.63
5066	.523	14.27	14.44	14.40						13.63
5067	.556	14.10	14.33	14.39	14.90					13.56
5068	.588	14.10	14.51	14.42	2 15.03				14.51	13.56
5085	9441.359	14.10	14.51		15.17	7 14.3	7 15.4			13.56
5086	.391	14.02	14.51		15.0	3 14.4				13.56
5087	.424	14.10				0 14.6				13.56
5089	9442.383	14.10			3 15.0	3 14.4	7 15.4	6 15.12	2 14.62	13.56
5090	.415	14.10				3 14.3	7 15.4	7 15.12		13.63
5091	.448	14.36			5 14.9	0 14.3	7 15.5	1 15.18		
5092	.480						4 15.4			
5093	.513				4 15.1	7 14.8	37 15.4	7 15.18		
5093	9446.341	14.10						1 15.20		13.64
5100	.374						37 15.5	15.2	6 14.21	1 3.5 6
0100	.014									

Nº п/п	JD hel	475	484	487	490	492	494	499	501	506
		1	10.	1.07	130	102	134	133	301	300
5101	243	14.00	1451	14.15	15.00	14.45		15.40		
5101	9446.408	14.33	14.51	14.15	15.03	14.47	15.51	15.18	14.39	13.56
5103	9449.382	14.10	14.44	14.28	14.90	14.28	15.55	15.14	14.87	13.70
5104	.414	14.02	14.33	14.24	15.03	14.47	15.34	15.20	14.36	13.82
5105	.447	14.52	14.44	14.33	15.03	14.37	15.55	15.20	14.10	13.82
5106	.483	14.36	14.44	14.24	15.03	14.37	15.43	15.33	13.82	13.82
5107	.518	14.10	14.33	14.34	15.03	14.71	15.51	15.25	14.04	13.64
5108	9452.574	14.02	14.33	14.33	15.17	14.28	15.51	15.71	14.45	13.63
5120	9555.289	14.27	14.33	14.69	15.03	14.37	15.51	15.18	14.31	13.70
5121	.323	14.25	14.33	14.69	15.03	14.94	15.81	15.33	14.25	13.65
5122	.358	14.10	14.44	14.55	14.90	14.78	15.59	15.33	14.77	13.67
5125	9557.278	14.10	14.51	14.81	15.03	14.47	15.59	15.13	14.83	13.70
5126	.311	14.10	13.89	14.81	15.03	14.37		15.19	14.62	13.56
5127	.345	14.10	14.27	14.85	15.03	14.28	15.51	15.18	14.31	13.70
5132	9558.276	14.27	14.35	14.70	14.90	14.37	15.59	15.19	14.92	13.63
5133	.309	14.36	14.51	14.78	15.03	14.37	15.51	15.19	14.94	13.70
5134	.343	14.10	14.44	14.81	15.03	14.47	15.74	15.13	14.87	13.56
5140	9559.273	15.73	14.44	14.81	15.03	14.28	15.49	15.04	14.88	13.63
5141	.309	16.39	14.44	14.66	15.03	14.37		15.17	14.88	13.63
5142	.342	16.15	14.16	14.84	14.90	14.28	15.51	15.26	14.87	13.63
5148	9561.273	14.10	14.04	14.68	15.10	14.78	15.74	15.05	14.21	13.82
5149	.309	14.40	13.82	14.68	15.03	14.47	15.74	15.13	14.24	13.70
5150	.343	14.27	14.04	14.70	15.17	14.37	15.55	15.17		
5153	9585.293	14.10	14.51	14.68	15.17	14.87	15.74	15.17	14.62	13.84
5160	9586.287	14.10	14.01	14.00	10.17	14.07	10.74	15.19	14.87	13.63
5167	9587.276	14.27	14.51	14.70	15.03	14.91	15.67	15.26	14.77	13.76 13.70
5174	9588.272	14.10	14.51	14.78	15.03	14.47	15.59			
5178	9589.281	14.10	14.01	14.70	10.00	17.71	10.03	15.19	14.49	14.14
	9592.267	14.10	14.44	14.74	15.03	14.28	15.59	10.57	14.41	13.63
5185 5192	9593.289	14.16	14.70	14.66	15.03	14.28	15.74	16.57	14.77	13.84
			14.82	14.86	15.03	14.47		15.19	14.83	13.82
5444	9739.477	14.48	15.21		14.90	14.74	15.46	15.26	14.83	13.64
5456	9743.490	14.48	15.03	14.60 14.38	14.90	14.67	15.49	15.26	13.40	13.64
5480 5487	9766.534 9767.527	$14.10 \\ 14.32$	15.10	14.35	15.03	14.47	15.44	15.26	14.50	13.76
			14.88	14.34		14.47	15.46	16.87	14.52	13.64
5490	9768.494	15.58	15.10		15.03		15.47	15.26	14.27	13.64
5491	.534	15.40		14.41 14.31	14.90	14.74	15.47	15.33	14.49	13.64
5498	9769.498	14.39	15.03		14.90	14.78	15.44	15.33	14.21	14.14
5512	9778.566	14.25	15.03 14.88	14.68	14.90	14.47	15.45	15.26	13.97	13.56
5513	.600	14.10		14.66	15.03	14.83	15.44	15.33	14.10	13.76
5514	9908.232	14.65	14.82	14.39	16.99	14.83	15.37	15.33	14.55	13.64
5515	.272	14.27	14.88		(16.85	14.79	15.43	15.33	14.88	13.64
5516	9909.301	14.10	14.70	14.33	14.90	14.74	15.22	15.33	14.62	13.98
5517	.340	14.02	14.51	14.35	15.03	14.62	15.22	15.33	14.81	13.56
5518	9910.227	14.27	14.90	14.34	14.90	14.62	15.27	15.38	13.47	13.64
5519	.264	14.27	14.70	14.34	14.90	14.47	15.27	15.33	13.99	13.64
5520	.300	14.25	14.75	14.41	14.90	14.78	15.37	15.33	14.21	13.64
5524	9912.244	14.10	15.21	14.41		14.47		15.33	14.79	13.64
5525	9914.240	15.87	15.21	14.34	14.90	14.71	15.22	16.79	14.95	13.64
55 26	.274	16.06	14.97	14.17	14.90	14.74	15.25	17.01	14.95	13.64
5527	.307	16.47	14.82	14.28	14.90	14.83	15.25	16.79	14.99	13.64
5541	9919.281	14.27	14.62	14.31	14.90	14.47	15.29	15.38	14.27	13.82
5544	9932.245	14.10	14.51	14.39	15.03	14.71	15.29	15.94	13.24	13.76
5546	9933.267		14.35	14.38	14.90	14.86	15.25	15.38	14.62	13.64
5547	.301	14.40	14.59	14.41	14.90	14.83	15.31	15.33	14.15	13.64
	2									

№ п/п	JD hel	475	484	487	490	492	494	499	501	506
	243									
55 49	9934.262	14.27	14.44	14.39	14.90	14.87	15.27	15.25	14.88	13.64
5550	.293	14.48	14.44	14.24	14.90	14.71	15.27	15.33	14.62	13.64
5563	9937.266	-	14.44	14.24	14.90	14.62	15.27	15.33	14.31	13.64
5578	9939.237		14.44	14.33	15.41	14.79	15.37	16.65	14.16	13.76
5602	9942.232	_	14.44	14.39	15.79	14.62	15.31	15.33	15.05	13.64
5641	9944.239	14.10	14.35	14.43	14.90	14.62	15.38	15.33	14.48	14.06
0011	244	11110	11.00	.,						
6106	0130.582	14.20	14.51	14.70	14.90	14.71	15.22	15.33	14.86	13.76
6111	0131.585	14.10	14.51	14.67	15.17	14.71	15.19	15.33	14.62	13.64
6119	0152.430	14.10	14.44	14.72	14.90	14.78	15.24	15.33	14.27	13.76
6127	0153.526	14.10	14.44	14.62	15.03	14.47	15.26	15.26	14.42	13.70
6132	0156.532	14.10	14.35	14.68	15.17	14.78	15.22	15.33	14.86	13.76
6143	0268.267	14.10	14.62	14.73	15.03	14.77	15.34	15.33	14.27	13.51
6144	.314	14.10	14.88	14.69	15.03	14.57	15.49	15.42	13.47	13.65
	0273.293	14.39	15.21	14.81	15.03	14.47			14.43	13.48
6157	0290.228	16.31	14.92	14.47	15.03	14.47	15.18		14.88	13.56
6182			15.03	14.46	15.03	14.82	15.31	15.42	14.84	13.98
6183	.260	16.47					15.40	15.42	14.76	14.09
6191	0292.261	14.10	15.06	14.38	15.17	14.89 14.65	15.34	15.33	14.79	13.98
6192	.293	14.46	14.97	14.43	15.03		15.04			13.98
6203	0293.277	14.10	14.82	14.44	14.90	14.75	15.34	15.40 15.33	14.50	14.11
6204	.310	14.43	14.70	14.44	15.03	14.86	15.29	15.00	14.71	
6213	0294.257	14.32	14.51	14.46	14.90	14.47	15.49	15.33 15.33	14.10	13.48 13.56
6214	.291	14.43	14.59	14.42	14.90	14.47	15.49	15.33	14.31	13.00
6228	0295.273	14.10	14.51	14.39	16.25	14.47	15.54	15.25	13.58	13.98
6696	0503.567	14.20	14.57	14.15	15.03	14.47	15.59	15.33	13.95	13.56
6713	0505.486	14.36	14.51	14.24	15.03	14.63	15.74	15.19	14.88	13.60
6724	0507.561	14.10	14.51	14.36	15.03	14.65	15.59	15.33	14.84	13.81
6733	0508.541	14.20	14.59	14.37	15.03	14.23	15.59	15.19	14.26	13.81
6743	0509.548	14.20	14.59	14.33	15.03	14.47	15.54	15.25	14.14	13.73
6753	0510.552	14.20	14.51	14.41	15.41	14.47	15.74	15.33	13.84	13.65
6762	0511.532	14.32	14.53	14.33	15.03	14.79	15.43	15.33	14.98	14.06
6778	0516.594	14.32	14.82	14.61	15.03	14.71	15.49	15.33	14.38	13.77
6792	0531.490	14.36	14.62	14.51	15.03	14.65	15.40	15.33	15.01	13.74
6793	.523	14.20	14.62	14.43	14.90	14.65	15.47	15.33	14.17	13.56
6800	0534.462	14.10	14.62	14.44	14.90	14.63	15.47	15.25	14.76	13.77
6801	.493	14.10	14.70	14.44	15.03	14.77	15.44	15.33	14.96	14.07
6807	0537.402	14.20	14.51	14.33	15.03	14.82	15.46	15.33	14.62	13.77
6808	.435	14.10	14.44	14.39	14.90	14.71	15.43	15.33	14.62	13.86
6822	0539.415	14.23	14.53	14.43	15.03	14.79	15.34	15.16	14.94	13.67
6823	.449	14.36	14.44	14.37	15.03	14.74	15.37	15.26	15.05	13.98
6829	0541.455	14.43	14.35	14.39	15.17	14.75	15.34	15.33	14.73	13.62
6830	.488	14.29	14.44	14.39	15.03	14.67	15.26	15.33	14.80	13.70
6839	0626.328	14.10	14.51	14.86	14.90	14.75		16.57	14.94	13.77
6840	.360	14.32	14.44	14.86	15.17	14.75	15.34	16.32	14.88	13.77
6845	0632.247	14.10	14.62	14.93	15.17	14.82	15.40	15.33	14.76	13.88
6846	0648.275	_	14.51	14.88	14.76	14.75	15.37	15.33	14.73	13.65
6859	0649.280	14.21	14.51	14.83	14.90	14.75	15.37	15.33	14.55	13.70
6860	.314	14.20	14.44	14.85	14.90	14.75	15.29	15.33	14.76	

Звезда КЗП 492 не показала реальных колебаний блеска. Звезда КЗП 506, по-видимому, типа RW Возничего. Амплитуда ее невелика.

НО Возничего (Aurigae)

Это «странная» звезда: она является либо цефеидой с сильно переменной кривой блеска и периодом, близким к 1,5 суткам, либо быстрой неправильной.

Глава II. ИССЛЕДОВАНИЕ ПЕРЕМЕННЫХ ЗВЕЗД В ОБЛАСТИ СОЗВЕЗДИЙ ЩИТА И ЗМЕИ

По снимкам неба московской, симеизской и одесской коллекций изучены 28 переменных звезд, принадлежащих этим двум созвездиям. Звездные величины звезд сравнения приведены в табл. 19. Среди этих переменных звезд две затменные, семь цефеид, пять — типа RR Лиры, шесть долгопериодических типа Миры Кита и восемь неправильных.

Таблица 19. Фотографические звездные величины звезд сравнения

Звезда	k	a	ь	с	a	y	и
SU Scuti	_	13.63	14.72	14.93	15.54		
SY »	_	13.77	14.43	15.16	15.70		_
SZ »	14.44	15.47	15.97	16.86		_	
TT »		14.00	14.73	15.71		_	_
TV »	14.60	$^{15.09}$	15.49	15.86	16.26	16.75	
UY »	10.71	11.62	12.17	12.64	13.31	13.44	
WY »	13.63	14.51	14.99	15.54	16.18		_
AN »	13.08	13.68	14.32	14.60	15.03		
AY »		14.21	15.4 6	15.97	16.56	_	
AZ »		15.37	15.93	16.59	17.05	_	
BG »	-	14.61	15.24				_
BM »	_	15.04	15.51	16.03	16.24		
BQ »	13.56	14.84	15.73	16.31	16.90	_	_
BR »	13.79	14.42	15 .2 5	15.90	16.47	17.44	
BU »	12.84	13.49	14.06	14.78	_	_	_
BZ »	12.82	13.25	13.42	14.04	14.54		_
CE »	14.04	14.51	15.26	16.02	16.65	17.67	_
CO » CZ »	_	14.57	14.83	15.43	15.90	16.63	
CZ »	_	15.44	15.91	16.24	16.50	17.09	
FI »		14.50	15.30	15.95	16.50		
FQ »	-	_	14.00	14.25	14.78	15.32	
FT »	_	15.52	16.12	16.90	17.31	_	_
FU »	_	14.55	15.28	16.22	_	_	_
DQ Serpentis		14.55	14.98	15.64	16.15	_	
DÝ 🕉	_	15.40	15.90	16.22	16.40	17.00	
КЗП 4355		11.77	12.30	12.61	13.14	13.46	-
КЗП 4417	_	14.17	15.17	16.13	16.78	16.62	17.22
CПЗ 1739	14.56	14.00	15.19	16.33	17.35		13.07

Одна из цефеид (SU Щита) оказалась исключительно интересной — крайне нестабильной. Она заслуживает дальнейшего внимательного исследования. Две звезды типа RR Лиры — WY и BU

Щита обладают нестабильными периодами. Не вполне уверенные выводы можно было сделать относительно звезды типа RR Лиры AZ Щита. Звезда очень слаба и для ее исследования нужен более мошный телескоп.

Среди неправильных звезд особо выделяется UY Щита: очень красная переменная типа μ Цефея. Для нее характерны медленные циклические колебания блеска с циклами, продолжительность которых от 800 до 4200 суток.

Звезда СЕ Щита оказалась переменной типа RW Возничего. Быстрые неправильные колебания с амплитудой до одной звездной величины наложены на медленные колебания, обладающие очень большой амплитудой, превосходящей три звездные величины, и циклом, который длится, в среднем, около 375 суток.

затменные звезды

SY Щита (Scuti)

Отмечено 15 глубоких ослаблений блеска. Их моменты, которые можно связать формулой

Min JD =
$$2440774.30 + 7.3772 \cdot E$$
,

приведены в следующей сводке:

Min JD	Ε	O-C	Min JD	Ε	O C
243			244		
9055.19	233	-0.22	0774.37	0	+0.07
9321.34	<u>—197</u>	+.35	0833.26	+ 8	06
9328.45	196	-⊢.08	1180.33	+55	+ .28
244			1187.35	+ 56	07
0036.36	-100	22	1239.22	+ 63	+ .16
0390.44	-52	25	1246.2 2	+64	— .22
0420.49	— 48	+.30	1519.46	+101	+ .06
0427.40	47	—.17	1571.25	+108	+ .21

Затмение длится очень долго, и его полная фаза весьма продолжительна. Поэтому указанная выше формула не претендует на очень

Таблица 20. Средняя кривая блеска SY Scuti

Фаза	m	n	Фаза	m	n	Фаза	m	n
0 ^p .0055	15.54	4	0 ^p .261	13.86	10	0 ^p .725 .802	13.85 13.86	10
.0339 .0417	15.44 14.80	3	.323 .382	13.92 13.83	10 10	.864	13.80	10 10
.0713 .0939	13.97 13.77	2 3	.430 .518	13.89 13.85	10 10	.903 .9427	13.82 13.91	6
.120 .148 .214	13.98 13.94 13.87	10 10 10	.584 .626 .676	13.86 13.82 13.87	10 10 10	.9646 .9888	14.97 1 5.7 7	4

высокую точность. Приведение наблюдений к одному периоду по-казало, что формулу надо немного изменить:

Min hel JD = $2439321.07 + 7.37683 \cdot E$; $P^{-1} = 0.1355596$.

Полученная с этими элементами средняя кривая блеска приведена в табл. 20 и изображена на рис. 13.

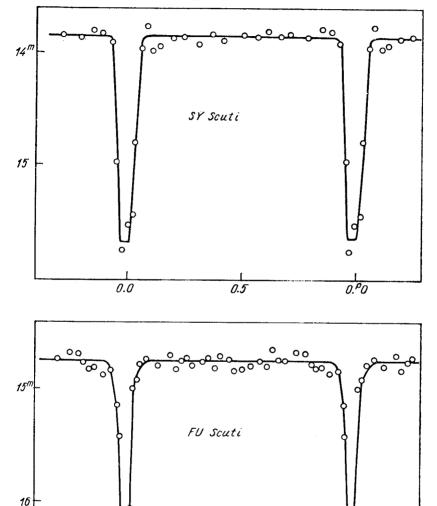


Рис. 13. Средние кривые блеска звезд типа Алголя.

0.0

 $O \cdot PO$

FU Щита (Scuti)

Переменная открыта Н. Е. Курочкиным. При оценках мы воспользовались избранными им звездами сравнения и звездными величинами. С приближенным значением периода построены сезонные кривые блеска и определены моменты минимумов:

Они связаны формулой

Min hel JD = $2432853.167 + 1.661503 \cdot E$; $P^{-1} = 0.601864697$. Средняя кривая блеска приведена в табл. 21.

Таблица 21. Средняя кривая блеска FU Scuti

	•		·					
Фаза	m	n	Фаза	m	n	Фаза	m	n
0 ^p .0065 .0108 .0119 .0291 .0454 .0625 .094 .140	16.22 16.19 16.07 15.00 14.92 14.78 14.74 14.79	2 2 3 3 5 10 10	0 ^p .334 .363 .398 .425 .458 .480 .514	14.75 14.72 14.82 14.69 14.74 14.83 14.82 14.79	10 10 10 10 10 10 10	0 ^p .756 .797 .821 .840 .869 .904 .9374	14.67 14.67 14.76 14.81 14.80 14.86 14.83 15.14	10 10 10 10 11 11 11 10
.198 .222 .243 .268 .297	14.69 14.82 14.75 14.72 14.78	10 10 10 10 10	.595 .628 .655 .673 .704	14.75 14.79 14.64 14.73 14.74	10 10 10 10 10	.9716 .9865 .9901 .9920	15.42 16.32 16.22 16.26	4 1 1 2

цефеиды

SU Щита (Scuti)

Переменная впервые изучена М. Харвуд [8], которая установила, что звезда принадлежит к типу RR Лиры и имеет период, равный 0⁴.59367. Однако впоследствии она пришла к заключению, что это цефеида с элементами

Max hel JD =
$$2427929.028 + 1.46230 \cdot E$$
.

Наблюдения автора, выполненные по московским снимкам, не удовлетворяют этим элементам. Автор нашел следующую формулу:

Max hel JD =
$$2439302.461 + 0.593977 \cdot E$$
.

Однако оказалось, что более поздние наблюдения не удовлетворяют этой формуле. Анализ всех московских наблюдений показал,

что наиболее применима формула

Max hel JD = $2439678.428 + 1.468753 \cdot E$; $P^{-1} = 0.68084967$.

Относительно нее вычислены остатки O-C и средняя кривая блеска, приведенная в табл. 22 и на рис. 14.

Таблица	22.	Средняя	кривая	блеска	SU	Scuti
---------	-----	---------	--------	--------	----	-------

laonna	a LL. Ope	A1						
Фаза	m	n	Фаза	m	n	Фаза	m	n
0 ^p .020 .040 .068 .135 .179 .201 .250 .285 .302 .310	14.36 14.37 14.48 14.54 14.56 14.60 14.74 15.06 14.94 14.82 15.03	5555555554	0 ^P .339 .354 .368 .397 .464 .507 .542 .576 .608 .628	14.93 14.90 14.82 14.86 15.33 15.29 15.48 15.48 15.48 15.49 15.40	55555555555	0 ^p .679 .704 .749 .807 .840 .869 .889 .912 .932 .976 .995	15.23 15.21 15.47 15.51 15.42 14.84 14.74 14.59 14.42 14.42	55555555555555555555555555555555555555

Просматривая симеизские планетные снимки, автор обнаружил, что старые наблюдения не удовлетворяют ни одной из этих фор-

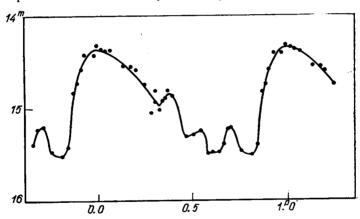


Рис. 14. Средняя кривая блеска SU Scuti.

мул. Все же удалось установить, что наблюдения, выполненные на протяжении интервала времени от 2420711 до 2434306, сводятся в среднюю кривую блеска при помощи формулы

Max JD =
$$2424324.48 + 1.467713 \cdot E$$
.

Уже после окончания обработки наблюдений, сделанных до 1971 г., были получены новые снимки, которые заставили переобработать все московские наблюдения. Были построены сезонные кривые

блеска, по которым надежно определены следующие моменты максимумов блеска:

Границы «сезона»	Max hel JD	Ε	O — A
2437106—2437199 2438582—2439342 2439642—2440506	2437199.166 9060.046 40060.274	-421 + 260	-0.007 037 030
2440774—2441246 2441477—2441573	1129.556 1515.508	+988 + 1251	.000

Исключительно надежный последний момент максимума показывает, что на протяжении последних 230 суток период внезапно сократился и теперь близок к 1.46750 суток, т. е. уменьшился на $0^{\rm d}.0012$.

AN Щита (Scuti)

Эта звезда исследована Харвуд [9], которая нашла следующую формулу:

Max JD = $2426595.600 + 32.8543 \cdot E$.

Остергоф [20] попытался улучшить эту формулу:

Max JD =
$$2428728.0 + 32.733 \cdot E$$
.

Наши наблюдения, сделанные по московским снимкам, показали, что формула Остергофа неудовлетворительна. Поэтому пришлось просмотреть одесские и симеизские снимки. Установлено, что рассеянные во времени симеизские наблюдения сводятся в плавную кривую блеска при помощи элементов

Max JD =
$$2428731.0 + 32.827 \cdot E$$
,

что видно из рис. 15. Таким образом, период, найденный Харвуд, гораздо лучше удовлетворяет старым наблюдениям, чем период,

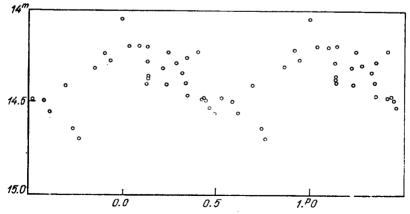


Рис. 15. Наблюдения AN Scuti, приведенные к одному периоду.

определенный Остергофом. Очевидно также, что величина периода переменна.

Сведение в сезонные кривые блеска московских и одесских наблюдений позволило определить пять надежных средних моментов максимума. Все уверенные данные приведены в следующей сводке:

Max JD	E	O - C
2426595.6	— 65	-0.2
8728.0	0	+ .1
37518.5	+268	2
8963 .3	+312	+1.3
9651.0	+333	+0.2
41158.5	+379	-1.2
1519.3	+390	-1.2
	2426595.6 8728.0 37518.5 8963.3 9651.0 41158.5	2426595.6 — 65 8728.0 0 37518.5 +268 8963.3 +312 9651.0 +333 41158.5 +379

Остатки О — С вычислены относительно формулы

Max JD =
$$2428727.9 + 32.8015 \cdot E$$
; $P^{-1} = 0.03048641$.

По этой же формуле вычислена из московских наблюдений средняя кривая блеска, которая приведена в табл. 23 и на рис. 18 (см. ниже).

Таблица 23. Средняя кривая блеска AN Scuti

.052 13.85 9 .420 14.10 10 .754 14.50			Фаза	n	m	Фаза	п	m	Фаза
	10 10	14.49 14.50 14.32					_		
.123 14.03 10 .503 14.24 10 .864 14.15 .156 14.07 10 .558 14.35 10 .900 14.12	10 5 5 5	14.15 14.12 13.95	.864 .900	10 10	$14.24 \\ 14.35$.503 .558	10 10	14.03 14.07	.123 .156

СО Щита (Scuti)

Переменность этой звезды открыта и впервые изучена Остергофом [19], который вывел следующую формулу:

Max JD =
$$2428776.6 + 17.1336 \cdot E$$
.

Небольшое количество фотоэлектрических наблюдений выполнил К. Кви [18]. Автор оценил блеск звезды на московских снимках, построил сезонные кривые блеска и получил три уверенные момента максимума. Сводка всех моментов имеет вид:

Источник	Max JD	Ε	O C
Остергоф	2428776.6	0	-0.06
Кви	38220.18	551	+ .49
Цесевич	9299.20	614	19
»	40412.96	679	— .40
*	1133.31	721	+ .16

Остатки О — С вычислены относительно новой улучшенной формулы ${\rm Max\ JD} = 2428776.66 \, + \, 17.13799 \, \cdot \, E.$

Возможно, что период изменяется.

Графическое представление наблюдений показало, что между четными и нечетными тактами колебаний замечается существенное различие. Поэтому средняя кривая блеска (табл. 24, рис. 16) построена относительно формулы

Max JD = $2428776.66 + 34.27598 \cdot E$; $P^{-1} = 0.0291749499$.

Таблица 24. Средняя кривая блеска CO Scuti

таолица	1 24. CP	СДПИЛ	KPHBUN OHO					
Фаза	m	n	Фаза	m	n	Фаза	m	n
0 ^p .0193 .0271 .0628 .0831 .0975 .1784 .2261 .2583 .2735 .2936 .3220	15.07 15.26 15.37 15.41 15.38 15.63 16.02 16.35 16.38 16.58 16.41	55556555555555555555555555555555555555	0 ^p .3548 .3866 .4305 .4703 .5151 .5660 .6081 .6372 .6845 .7069 .7302	16.28 16.25 15.60 15.22 15.14 15.39 15.50 15.48 15.80 15.90 16.09	555555555555555555555555555555555555555	0 ^p .7494 .7630 .7907 .8102 .8524 .8761 .8889 .9079 .9507 .9898	16.41 16.62 16.57 16.65 16.64 16.50 16.41 16.28 15.51 15.25	5 5 5 5 5 5 5 5 5 4

На рис. 16 изображены: в верхней части все наблюдения, приведенные к одному периоду; в середине — средняя кривая, а внизу — совмещение двух тактов. Кружками изображен такт с фазами от $0^p.0$ до $0^p.5$, а точками — с фазами от $0^p.5$ до $1^p.0$. Обе кривые для наглядности несколько расширены за границы указанных интервалов.

На верхней кривой изображены три вполне уверенные наблюдения, сделанные на снимках, датированных 2439642, 2439647 и 2439674. Эти точки показывают, что высота первичного максимума существенно изменяется. Первичным мы считаем тот максимум, который приходится на фазу 0°.0. Кроме того, видно, что следующий за этим максимумом минимум, который мы назовем вторичным, характеризуется большим рассеянием наблюдений, в то время как в первичном минимуме такого рассеяния нет. На нижней части рисунка показано различие кривых блеска обоих тактов, заключающееся в различии глубин минимумов и расхождении восходящих ветвей по времени. Все эти явления характерны для звезд типа RV Тельца.

Мы также сделали попытку сравнить ход изменения звездных величин с ходом изменений показателей цвета, приведенных в работе K. Кви. Форма кривых блеска V и показателя цвета B-V одинакова, но максимум показателя цвета наступает на 0.1 периода раньше минимума блеска V, что также характерно для звезд типа RV Тельца.

Таким образом, если СО Щита и принадлежит к цефеидам, то у нее несомненны признаки звезд типа RV Тельца.

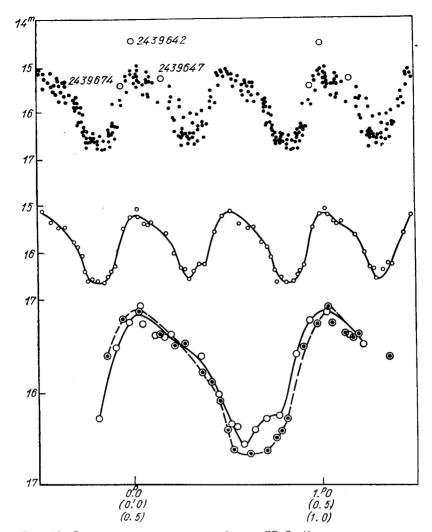


Рис. 16. Средние кривые изменения блеска CO Scuti.

Интересно отметить, что эта звезда находится в очень «покрасненной» области неба. Показатели цвета изменяются в пределах:

$$B - V$$
 от $+1^{\rm m}.2$ до $2^{\rm m}.1$ и $U - B$ — от $0^{\rm m}.84$ до $2^{\rm m}.05$.

CZ Щита (Scuti)

Эта цефеида типа W Девы исследована очень мало. Ее открыл и исследовал П. Остергоф [20], а фотоэлектрически наблюдал К. Кви [18]. Последний, скомбинировав свои немногочисленные наблюдения с наблюдениями П. Остергофа, нашел улучшенное значение

периода, равное 15.3584 суток. Уже первоначальная обработка наблюдений автора, сделанных по московским снимкам, показала, что найденный К. Кви период нуждается в существенном уточнении.

Отыскание правильного значения периода потребовало довольно длительного анализа наблюдений автора, так как у этой звезды моменты максимумов определяются недостаточно точно. Пришлось

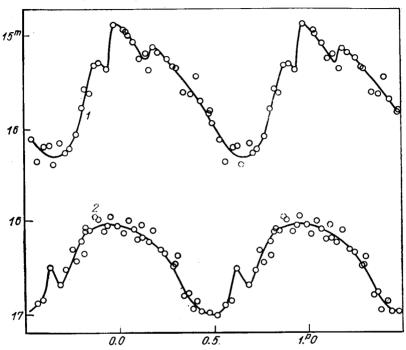


Рис. 17. Средние кривые изменения блеска FI (1) и CZ (2) Scuti.

строить средние сезонные кривые блеска и определять моменты перехода через определенную звездную величину на нисходящей ветви кривой. В конце концов, из сезонных кривых, построенных по более длительным рядам наблюдений, удалось определить следующие моменты минимумов блеска:

Источник	Min JD	Ε	O-C
Остергоф	2428770.96		0.07
Кви	38230.98		+ .31
Цесевич	8584.52	0	+ .07
` »	40060.97	+ 96	11
»	0799.18	+144	− .21
*	1507.56	+190	+ .62

Остатки О — С вычислены относительно окончательной формулы Min JD = 2438584.45 + 15.38153 \cdot E.

Из наблюдений, выполненных до 1972 г., была построена единая средняя кривая блеска, которая приведена в табл. 25 и изображена на рис. 17. На восходящей ветви кривой виден горб.

Таблица 25. Средняя кривая блеска CZ Scuti

Фаза	m	n	Фаза	m	n	Фаза	m	n
0P.016 .047 .070 .094 .112 .152 .179 .218 .246 .286 .297	16.12 15.99 16.08 16.19 16.03 16.17 16.21 16.09 16.30 16.33 16.48 16.47 16.38	555555555555555555555555555555555555555	0 ^p .340 .366 .388 .415 .435 .475 .510 .555 .590 .625 .682 .715	16.79 16.77 16.94 16.85 16.97 17.00 16.88 16.85 16.50 16.68 16.52 16.30	555555555555555555555555555555555555555	0 ^p .762 .798 .805 .816 .824 .845 .869 .886 .914 .935 .951	16.43 16.20 16.35 16.11 16.08 16.09 15.95 15.98 16.11 16.04 15.94 16.03	55555555555555555555555555555555555555

FI Щита (Scuti)

Эту переменную звезду открыл и исследовал Бакош [5]. Наблюдал ее также Кви [18]. По московским наблюдениям автора построены сезонные кривые блеска и определены моменты максимумов:

Источник	Max JD	E	O — C
Бакош	2428728.7	0	0.00
Цесевич	38581.94	663	08
` »	9652.30	735	+.23
>>	40796.30	812	12
	1500.49	860	30

Остатки О — С вычислены относительно формулы

Max JD = $2428728.70 + 14.86173 \cdot E$; $P^{-1} = 0.067286917$.

Таблица 26. Средняя кривая блеска FI Scuti

Фаза	m	n	Фаза	m	n	Фаза	m	n
0P.024	14.94	5	0 ^p .339	15.61	5	0p.681	16.17	5
.031	14.96	4	.373	15.64	5	.704	16.26	5 5
.046	15.00	5	.404	15.45	5	.727	16.23	5
.076	15.07	5	.431	15.70	5	.766	16.08	4
.106	15.24	5	.473	15.84	5	.800	15.79	5
.131	15.19	5	.479	15.81	5	.819	15.58	5 5 5 5
.156	15.37		.492	15.93	5	.841	15.62	5
.176	15.13	5	.526	16.12	5	.870	15.31	5
.205	15.19	5	.555	16.36	5	.895	15.30	5
.250	15.26	5 5 5	.596	16.20	5 5	.929	15.36	5
.279	15.34		.629	16.18	5	.969	14.88	4
.300	15.36	5 5	.647	16.39	5			

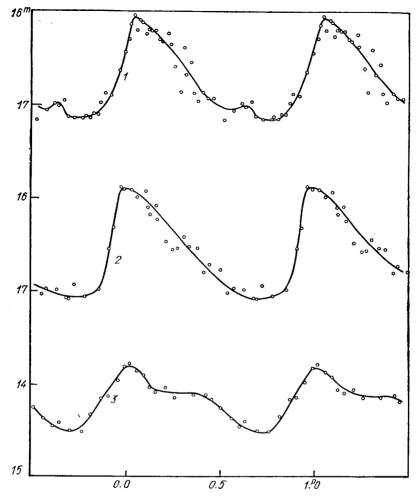


Рис. 18. Средние кривые блеска цефеид: 1 — FT Scuti; 2 — DV Serpentis; 3 — AN Scuti.

По этой формуле определена общая средняя кривая блеска, которая приведена в табл. 26 и изображена на рис. 17. На кривой блеска видны два горба.

FT Щита (Scuti)

Переменную звезду открыл Н. Е. Курочкин [1]. Она до сих пор не исследована. После того, как автору удалось найти предварительные элементы, он построил сезонные кривые блеска и определил по ним моменты перехода через звездную величину 16.3 на восходящей ветви. Эти средние моменты приведены в следующей сводке:

Остатки О — С вычислены относительно формулы

Момент T (16^m.3) = 2441127.31 + 5.25537 · E; P^{-1} = 0.1902816.

По всем наблюдениям, сделанным до 1972 г., вычислена относительно этих элементов общая средняя кривая блеска, которая приведена в табл. 27 и изображена на рис. 18. Определив из этой кривой фазу максимума, мы нашли окончательную формулу:

Max JD =
$$2441127.52 + 5.25537 \cdot E$$
.

Таблица 27. Средняя кривая блеска FT Scuti

Фаза	m	n	Фаза	m	n	Фаза	m	n
0 ^p .007	16.25	5 5	0 ^p .251	16.58	5	0 ^p .658	16.95	5
.017	16.11	5	.280	16.84	5	.682	17.12	6
.032	16.01	5 5 5 5 5 5	.2 96	16.37	5 5	.715	17.14	6555555555
.050	16.17	5	.317	16.66	5	.757	17.14	5
.069	16.06	5	.338	16.53	5	.774	17.12	5
.084	16.08	5	.357	16.86	5	.793	17.14	5
.100	16.21	5	.371	16.94	5	.815	17.09	5
.114	16.16	5	.403	16.86	6	.839	17.09	5
.129	16.17	5 5 5	.427	16.91	5	.856	16.97	5
.150	16.17	5	.4 66	16.92	6	.880	16.86	5
.171	16.28		. 510	17.16	5	.913	16.88	5
.188	16.29	6	.569	17.05	5	.955	16.61	4
.215	16.21	6 5	.608	16.98	5	.986	16.42	4
.227	16.33	5	.630	17.00	5			

DV 3meu (Serpentis)

Переменную открыл Н. Е. Курочкин [1] на московских снимках области SA 110. С тех пор было накоплено некоторое количество новых снимков той же области неба, что дало возможность исследовать эту цефеиду. После отыскания предварительного значения периода автор построил сезонные кривые блеска, из которых определил следующие моменты максимумов:

Max JD	\boldsymbol{E}	O - C
2433048.20	0	-0.28!
3487.03	19	+ .34!
5335.3:	99	+3.5:
6393.53	145	+0.78
7570.97	196	+1.97
7870.75	209	+1.91
8260.70	226	-0.22!
8607.06	241	+ .18!

Наиболее надежные определения, отмеченные восклицательным зна-ком, использованы для вывода формулы

Max JD =
$$2433048.48 + 23.0639 \cdot E$$
; $P^{-1} = 0.0433578$.

Относительно этой формулы построена средняя кривая блеска, которая приведена в табл. 28 и изображена на рис. 18.

Таблица 28. Средняя кривая блеска DV Serpentis

Фаза	т	n	Фаза	m	n	Фаза	m	n
0P.019 .051 .091 .109 .118 .153 .163 .208 .242	15.91 15.98 15.93 16.10 16.18 16.09 16.23 16.46 16.55 16.54	5555555555555	0 ^p .296 .343 .371 .413 .441 .492 .539 .567 .622 .675	16.42 16.52 16.53 16.79 16.72 16.76 17.03 16.97 16.98 17.07	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 ^p .683 .713 .774 .847 .900 .925 .958 .987	17.08 16.93 17.05 16.98 16.54 16.31 15.89 15.90	5555555

Наблюдать эту звезду было трудно, гак как она слаба и находится внутри небольшого звездного скопления.

ЗВЕЗДЫ ТИПА RR ЛИРЫ

ТТ Щита (Scuti)

Эту звезду изучали Харвуд [9] и Остергоф [20]. По сезонным кривым блеска автор определял четыре уверенных момента максимума блеска. Полная сводка моментов имеет вид

Источник	Max hel JD	E	O — A	O — B
Харвуд Остергоф Цесевич » »	2426153.630 8671.548 38966.388 40390.428 1185.335 1517.353	-5559 0 $+22729$ $+25873$ $+27628$ $+28361$	-0.033 $.000$ $+ .001$ $+ .002$ $+ .002$ $+ .016$	-0.012 + .016 + .002 004 005 + .008
»	1017.303	-1-20001	7 .010	1 .000

Остатки О — А вычислены относительно формулы

Max hel JD =
$$2428671.548 + 0.4529385 \cdot E$$
; $P^{-1} = 2.20780525$,

которая использована как основа для вычисления средней кривой блеска по московским наблюдениям, выполненным до 1972 г. (табл. 29, рис. 19).

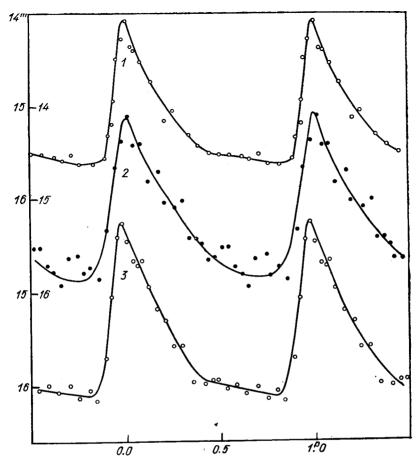


Рис. 19. Средние кривые блеска звезд типа RR Лиры: I - TT Scuti; 2 - WY Scuti; 3 - AY Scuti.

Таблица 29. Средняя кривая блеска ТТ Scuti

		<u> </u>					T	
Фаза	m	n	Фаза	m	n	Фаза	m	n
op 000	14.07	3	0 ^p .394	15.42	10	0 ^p .826	15.63	10
0 ^p .008 .038	14.07	4	.452	15.50	10	.893	15.57	10
.055	14.39	3	.503	15.51	10	.910	15.33 15.19	3 4
.089	14.53	5 5	.559 .628	15.52 15.55	10 10	.937 .943	14.94	2
.145 .213	14.74 15.13	10	.665	15.57	10	.959	14.48	5
.257	15.05	8	.712	15.53	10	.989	14.27	4
.343	15.31	10	.764	15.62	10			

После обработки снимков 1972 г. и получения нового (последнего в табл. 29) момента максимума, мы попытались найти новую формулу

Max hel JD =
$$2428671.532 + 0.45293934 \cdot E$$
,

относительно которой и вычислены остатки О — В.

WY Щита (Scuti)

Формула

Мах hel JD = $2439326.495 + 0.585816 \cdot E$; $P^{-1} = 1.70702063$ послужила основой для построения сезонных кривых блеска. По ним определены следующие моменты максимума:

При попытке построить единую кривую блеска по всем наблюдениям мы увидели, что более старые наблюдения этой формулой не представляются. Кроме того, графическое представление всех новых наблюдений показало, что блеск в максимуме колеблется почти на звездную величину. Мы попытались оценить приближенные моменты максимумов по более старым (к сожалению, немногочисленным) наблюдениям и определить их:

Хотя эти моменты определены очень неуверенно, тенденция к росту О — С с увеличением номера E очевидна. Поэтому звезда очень похожа на RR Лиры или RW Дракона.

По всем наблюдениям, начиная с момента 2439290, построена единая средняя кривая (табл. 30, рис. 19).

Таблица 30. Средняя кривая блеска WY Scuti

Фаза	m	n	Фаза	m	n	Фаза	m	п
0 ^p .013	14.11 14.41	4 5	0 ^p .380	15.41	<u>.</u> 6	0p.695	15.63	5
.082	14.41	5 5	.406 .441	15.48 15.63	5 5	.749 .774	15.59 15.80	5
.121	14.80	5	.476	15.62	5	.810	15.73	5
.171 .204	$\frac{14.72}{15.03}$	5 5	.511 .545	15.51 15.51	5 5	.861	15.86	5
.267	15.09	5	.587	15.71	5 5	.903 .948	15.33 14.66	5 5
.303 .341	15.03 15.42	5 5	.619 .659	15.79 15.92	5 5	.987	14.37	5

AY Щита (Scuti)

Эта звезда исследована Остергофом [20]. Наши наблюдения, сделанные на московских снимках, позволили определить сезонные моменты максимумов, которые не очень уклоняются от формулы Остергофа:

Max hel JD =
$$2428727.513 + 0.5446323 \cdot E$$
; $P^{-1} = 1.83610116$. (1)

Полная сводка моментов максимума следующая:

Источник	Max hel JD	E	O — A	$O \longrightarrow B$
Остергоф Цесевич	2428727.513 39294.463			-0.001 + .003
>	40037.339	20766	.008	÷ .001
>>	0824.324	22211	— .017	.006
>>	1515.469	23480	010	+ .001

Остатки О — A вычислены по формуле Остергофа. Остатки О — B определены относительно нашей новой формулы:

Max hel JD =
$$2438727.514 + 0.54463178 \cdot E$$
.

Средняя кривая блеска, вычисленная с помощью формулы (1) по московским наблюдениям, которые выполнены до 1972 г., приведена в табл. 31 и изображена на рис. 19.

Таблица	31.	Средняя	кривая	блеска	AY	Scuti
---------	-----	---------	--------	--------	----	-------

Фаза	m	n	Фаза	т	n	Фаза	m	n
0 ^p .005	14.45	5	0 ^p .293	15.57	5	0 ^p .700	16.00	10
.042	14.67	5	.356	15.97	5	.748	16.13	10
.065	14.70	5	.414	15.98	6	.803	16.05	10
.087	14.66	5	.460	15.93	5	.840	16.16	6
.117	14.96	10	.490	15.93	10	.889	15.71	4
.166	15.19	10	.534	16.02	10	.926	15.05	5
.209	15.30	10	.586	15.99	9	.954	14.42	5
.252	15.56	10	.635	16.07	10	.980	14.25	$\ddot{6}$

AZ Щита (Scuti)

Эта переменная открыта очень давно, но до сих пор не изучена, что объясняется, по-видимому, двумя причинами. Во-первых, она очень слаба и, во-вторых, не опубликована карта ее окрестностей, так что идентификация затруднена. Изучение московских снимков показало, что блеск звезды очень быстро изменяется. Подъемы и падения блеска на звездную величину за 45 мин, отделяющих две смежные экспозиции, наблюдались несколько раз. Кроме того, из списка наблюдений очевидно, что кратность периода близка к суткам.

Испробовав несколько возможных значений периода, автор остановился на элементах

Max hel JD =
$$2438942.466 + 0.332519 \cdot E$$
; $P^{-1} = 3.007347$,

наилучшим образом представляющих наблюдения. Была вычислена средняя кривая блеска, которая приведена в табл. 32 и изображена на рис. 20. Рассеяние индивидуальных наблюдений довольно вели-

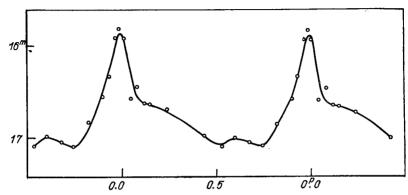


Рис. 20. Средняя кривая блеска AZ Scuti.

ко, что может быть вызвано слабым блеском переменной звезды и трудностью его оценок.

Таблица 32. Кривая изменения блеска AZ Scuti

Фаза	m	n	Фаза	m	n	Фаза	m	n
OP.000	15.92	5	0 ^p .423	16.96	10	0 ^p .899	16.55	4
.036	16.56	5	.523	17.08	10	.929	16. 32	5
.076	16.43	10	.592	16.98	10	.964	15.91	3
.112	16.61	10	.670	17.03	10	.983	15.82	4
.142	16.63	10	.737	17.07	5			
.236	16.68	10	.817	16.82	9			

BU Щита (Scuti)

При полной обработке данных об этой интересной звезде автор использовал наблюдения Н. Е. Курочкина [1] и собственные наблюдения, выполненные на московских, симеизских и одесских снимках. Оказалось, что период звезды подвержен очень большим колебаниям.

Моменты максимума блеска этой звезды определяются нечетко. Поэтому по средним кривым блеска были определены моменты перехода через звездную величину $13^{\rm m}.5$ на восходящей ветви кривой:

	Момент	$E_{ m A}$	O A	O B	0-C0-D
Источник	$T(13^{\rm m}.5)$				-
Симеиз	2424702.30	-33049	+0.28		
»	6890.36	-27842	+ .34		
»	9073.28	 22647	+ .30		
Москва	32770.441	13848	+ .098	+0.019	
»	3502.381	-12106	+ .045	020	
Симеиз	3802.41	— 11392	05	01	
Москва	5335.288	— 7744	+ .026	— .001	
»	6451.314	— 5088	.007	— .011	
»	7527.447	 2527	.014	. .004	
»	7854.357	← 1749	- .022	+ .003	
»	8172.453	992	020	+ .012	
»	8589,308	0	.006		0.007
»	8944.401	+ 845	+ .015		+ .003
»	9321.333	+1742	025		.000
" »	9674.316	+2582	+ .038	_	.000
»	40056.296	+3491	053		+ .003
	0412.216	± 4338	→ .061	_	- .001 0.000
»	0799.268	+ 5259	÷ .106	_	.000
»	1190.515	+6190	+ .144	_	008
»		1 1111	170		<u> </u>
»	1515.357	- + 6963	+ .170		020

Остатки О — А вычислены относительно формулы

$$T(13^{\rm m}.5) = 2438589.314 + 0.420203 \cdot E_{\rm A}.$$
 (A)

Таблица 33. Средние кривые блеска BU Scuti

1 аолиц	a 33. C	редние	кривые оле	CRA DO S				
Фаза	m	n	Фаза	m	n	Фаза	m	n
Интервал	2432743 -	24382	84. Фазы	относител	вьно ф	ормулы (Е	3)	
0 ^p .003	13.45	3	0p.283	13.32	4	0p.752	14.11	9
.028	12.95	3	.326	13.23	5 8	.796	14.26	10
.040	12.98	4	.363	13.38	8	.826	14.32	5 5
.088	12.79	6	.450	13.74	10	.913	14.16	5
.109	12.58	6	.524	14.00	10	.942	14.04	4
.146	12.83	4	.572	14.04	10	.972	13.42	6
.199	12.97	7	.640	14.16	9			
.240	12.90	4	.684	14.16	9			
Интервал	2438582	<u> </u>	06. Фазы	относите	льно ф	ормулы (C)	
0P.017	13.16	4	0 ^p .346	13.29	5	0 ^p .838	14.17	4
.045	13.12	7	.390	13.46	6	.872	14.36	6
.111	12.67	6	.450	13.59	10	.894	14.22	4
.136	12.77	4	.515	13.72	10	.933	14.14	4
.181	13.02	5	.580	13.99	10	.962	13.88	4
.236	13.14	5	.649	14.00	6	.999	13.37	4
.275	13.20	6	.714	13.86	5			
.310	13.28	5	.771	14.17	8			
Интервал	2440774	<u> </u>	246. Фазы	относите	льно ф	ормулы (l))	
0P.018	13.28	2	0 ^p .295	13.28	5	0 ^p .751	14.06	4 5
.033	12.95	3	.409	13.49	5	.817	14.21	5
.056	12.96	2	.504	13.70	6	.873	13.91	3
.083	12.84	3	,589	13.81	4	.925	13.61	3
.133	12.85	3	,656	14.07	4 6 3	.961	13.84	3
.213	13.12	4	.717	13.95	3			

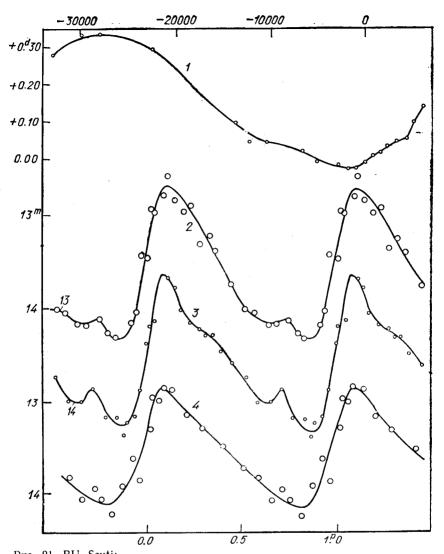


Рис. 21. BU Scuti: I — кривая изменения остатков О — A, которая характеризует изменяемость периода; 2-4 — сезонные кривые блеска.

Их ход с номером $E_{\rm A}$ изображен в верхней части рис. 21. Поведение звезды может быть описано тремя другими формулами, действующими на ограниченных интервалах:

$$T$$
 (13^m.5) = 2432770.422 + 0.4201944 · $E_{\rm B}$; P^{-1} = 2.37985085, (B) T (13^m.5) = 2438589.315 + 0.4202171 · $E_{\rm C}$; P^{-1} = 2.3797223, (C) T (13^m.5) = 2440412.216 + 0.420252 · $E_{\rm D}$; P^{-1} = 2.37952467. (D)

В сводке указаны остатки наблюденных моментов от этих формул. Так как остатки невелики, можно было вычислить отдельные средние кривые блеска, которые приведены в табл. 33 и изображены на рис. 21. Из этого рисунка видно, что максимум приходится на фазу 0.1 P, поэтому для перехода к максимуму надо добавить к моментам 0.042 суток. Кроме того, видно, что кривые слегка различаются. Амплитуда немного уменьшилась — блеск в максимуме снизился на $0^{\rm m}$.3, а в минимуме увеличился на $0^{\rm m}$.15; восходящая ветвь стала более пологой.

ДОЛГОПЕРИОДИЧЕСКИЕ ЗВЕЗДЫ

SZ Щита (Scuti)

Московские снимки позволили определить два уверенных момента максимума и два момента оценить приближенно. Добавив данные Харвуд [10], мы получили следующую сводку моментов максимума:

Источник	Max JD	\boldsymbol{E}	0-C
Харвуд	2416330 *	 76	12
»	23320 *	-53	+27
»	3580 *	52	<u></u> 16
»	3900:	 51	+ 2:
»	7239 *	4 0	+17
»	9084:	-34	+48:
»	30233 *	-30	-11
Москва	9313*	0	+2
»	9620:	+1	+ 7:
»	40816*	+5	6
»	1110:	+ 6	—14:

Остатки О — С вычислены относительно формулы

Max JD =
$$2439311 + 302.22 \cdot E$$
.

Звездная величина в максимуме составляет $15^{\rm m}.0$, а в минимуме звезда слабее, чем $16^{\rm m}.8$. В сводке звездочкой отмечены моменты, использованные при решении способом наименьших квадратов.

TV Щита (Scuti)

Ни одного полного максимума этой звезды пронаблюдать не удалось. Однако можно было оценить их приближенные моменты:

О — С вычислены относительно формулы

Max JD =
$$2440458.5 + 295.6 \cdot E$$
.

Звездная величина в максимуме равна $14^{\rm m}.9$, а в минимуме звезда слабее, чем $17^{\rm m}.0$ (табл. 34).

Таблица 34. Московские наблюдения TV Scuti *

JD hel	m	JD hel		JD hel	m
243		243		244	-
7118.48	(16.75	8977.44	14.95	0506.22	16.68
7197.24	16.54	8991.33	14.74	0782.44	16.56
7198.24	16.54	9294.46	16.82	0782.48	16.26
7199.24	16.50	9294.50	16.47	0793.37	16.55
8964.30	16.06	9297.48	16.82	0794.40	16.59
8965.35	15.94	9318.41	16.75	0794.41 0799.38	16.66 16.95
8966.37	15.80	244	(16.75	0803.38	16.75
8968.29	15.86 15.64	0393.44 0412.45	(16.75 16.75	0808.36	16.75
8972.30	15.0 4 15.02	0412.45	16.26	0808.39	17.05
8975.33 8975.37	15.02	0425.49	15.86	0000.00	17.00
8975.40	15.36	0444.30	14.94		

^{*} В интервалах 2438582—2438621; 2438936—2438947; 2439053—2439060; 2439330—2439342; 2439642—2439702; 2440033—2440098; 2440828—2440838; 2441129—2441246; 2441477—2441573 блеск звезды слабее 17th.

BQ Щита (Scuti)

Наблюдения расположились более удачно, чем в предыдущих случаях, и можно было определить несколько уверенных моментов максимума и оценить приближенные моменты еще трех максимумов. Все данные приведены в следующей сводке:

анные приведены в следующей сводке.

Моменты максимумов представляются формулой

Max JD =
$$2439653 + 377.5 \cdot E$$
.

Звездная величина в максимуме составляет 14^m.4, а в минимуме звезда слабее 17-й величины.

BR Щита (Scuti)

Моменты максимумов определяются неточно из-за неудачного расположения наблюдений во времени. Более уверенные моменты приведены в следующей сводке:

Эти моменты удовлетворяют формуле

Max JD =
$$2437142 + 315 \cdot E$$
,

улучшать которую по способу наименьших квадратов не имело смысла.

Звездная величина в максимуме равна $14^{\rm m}.3$, а в минимуме звезда слабее 17-й величины

КЗП 4417-Ross 237 Щита (Scuti)

Эта переменная звезда, изменяющая свой блеск от $14^{\rm m}$.6 до невидимости, принадлежит к долгопериодическим звездам, но, возможно, не миридам. Московские снимки охватывают незамкнутые ветви кривых. В одном случае в течение одного сезона наблюдались как восходящая, так и нисходящая ветви кривой блеска, максимальная жечасть кривой наблюдениями не покрыта. Таким образом, все моменты (которые мы условно называем моментами максимумов), приведенные в следующей сводке, являются приближенными:

Max JD	$E O \longrightarrow C$	Max JD	$E \circ -C$
2433488 7106 9000	$ \begin{array}{ccc} -19 & -29 \\ -8 & +27 \\ -2 & -21 \end{array} $	2439645 40033 1573:	$ \begin{array}{rrr} 0 & -24 \\ +1 & +40 \\ +6 & -39 \end{array} $
9350	-1 + 5		•

Остатки О — С вычислены относительно формулы

Max JD =
$$2439669 + 323.8 \cdot E$$
.

Однако вряд ли удалось бы свести с помощью этой формулы все наблюдения в одну кривую блеска, так как остатки О—С велики. Возможно, что переменная является полуправильной с большой амплитудой изменения блеска и с не вполне строгим периодом.

СПЗ 1739 Щита (Scuti)

Эта переменная открыта автором на московских снимках (табл. 35). Определены два вполне надежных момента максимума, один менеенадежный и обнаружены еще два усиления блеска:

Эти моменты более или менее удовлетворительно представляются: формулой

Max JD =
$$2440444 + 245 \cdot E$$
,

относительно которой вычислены О — С. Попытки найти другое возможное значение периода успехом не увенчались.

Таблица 35. Московские наблюдения СПЗ 1739*

JD hel	m	JD hel	m	JD hel	m
243		244		244	
2853.19	15.19	1160.40	16.77	1239.22	15.84
8936.46	16.20	1161.38	16.33	1240.21	15.84
8940.43	15.95	1162.40	16.24	1241.21	16.33
8942.46	15.82	.43	16.33	1245.24	16.33
8943.50	15.19	1163.38	16.24	1246.22	16.45
8944.39	14.98	1176.38	14.72	1477.41	15.48
8946.44	15. 0 7	1177.34	14.40	.45	15.57
8947.44	15.19	.38	14.40	1479.45	15.1 9
8964.30	14.16	1180.30	13.88	.48	15.42
8965.35	14.57	.33	13.58	1483.46	15.6 5
8966.37	14.57	1181.38	14.00	1484.45	15.85
8968.29	14.27	1182.39	13.79	.48	15.57
8972.30	14.69	1183.36	13.64	1485.46	15.95
244		.40	13.72	1501.37	(16.33)
0033.40	17.31	1184.34	13.36	1508.40	`16.57
0420.49	16.33	.38	13.39	.44	16.65
0425.40	16.22	1185.34	13.43	1512.45	(16.90)
0427.40	16.08	.37	13.43	.48	16.89
0444.30	14.57	1187.35	13.68	1514.35	(16.90
0506.22	16.83	.38	13.79	.39	(16.90
0508.30	16.75	1188.34	13.58	1515.44	(16.90
1133.41	(17.35)	.38	13.58	.47	16.81
1159.39	16.91	1236.23	15.70	1517.44	16.74
.43	17.06	1237.20	15.76	.47	(16.90)
1160.37	16.62	1238.22	15.57		

*В интервалах 2433488—2433533; 2437106—2437199; 2438582—2438621; 2439053—2439069; 2439290—2439342; 2439642—2439702; 2440034—2440098; 2440386—2440412; 2440744—2440838; 2441519—2441573 блеск звезды оставался слабее 17 m.

ПОЛУПРАВИЛЬНЫЕ И НЕПРАВИЛЬНЫЕ ПЕРЕМЕННЫЕ ЗВЕЗДЫ UY Щита (Scuti)

Эта переменная открыта очень давно, но до сих пор совсем не изучена. Спектральный класс звезды М4 Іа, и можно было ожидать, что она является неправильной переменной — сверхгигантом. Действительно, московские наблюдения показали, что ее блеск изменяется медленно, а потому было решено проследить за поведением звезды и на старых симеизских планетных снимках (табл. 36). Кроме того, по нашей просьбе М. Гирняк оценила блеск переменной на снимках Львовской коллекции (табл. 37), а В. Сатывалдыев изучил поведение переменной на снимках душанбинской службы неба (табл. 38). Так как переменная звезда изменяет свой блеск сравнительно медленно, данные были осреднены. Средние моменты и

Таблица 36. Симеизские наблюдения UY Scuti

JD hel	m	JD hel	m	JD hel	m
242 0283.49 0300.44 0334.44 0688.43 0711.33 1394.46 2492.38 3224.43	13.10 12.77 13.00 12.74 12.64 13.08 13.20 12.40	242 4383.30 4387.30 4435.24 4650.46 4669.50 4678.47 4680.44 4682.40	13.09 13.22 13.25 12.52 12.11 12.06 11.92 12.40	242 7980.45 7987.47 7992.44 8009.34 8011.38 8013.42 8018.34 8347.44	12.35 12.22 12.38 12.25 12.16 12.36 12.38 12.71
3226.48 3579.37 3581.49 3960.39 4296.43 4324.48 4328.42 4332.46 4342.36 4346.41	12.42 13.24 13.31 12.26 13.00 13.04 12.98 13.10 13.13	4702.46 4726.30 4727.42 4729.34 4772.27 5032.41 5445.37 6131.48 6599.25 6857.48	12.05 12.60 12.54 12.50 12.45 13.01 12.43 12.45 12.33 12.88	8361.35 8696.48 8702.47 8718.43 8720.44 9079.43 9456.36 9814.38 243	12.71 12.30 12.28 12.41 12.24 12.55 12.31 12.16
4346.41 4348.42 4349.34 4350.43 4352.37 4358.36 4360.36 4379.42	13.11 12.98 13.04 13.15 13.18 13.09 13.22	6882.35 6894.38 6897.4 6915.4 6928.4 6949.4 7302.35	13.14 13.03 12.92 13.09 13.01 13.24 12.54	2732.36 3098.38 3446.46 3447.43 4212.34 4306.4	11.95 12.20 12.30 11.92 12.45 12.33

Таблица 37. Львовские наблюдения UY Scuti

JD hel	nı	JD hel	m	JD hel	m
243 2738.414 2742.445 2745.399 2745.431 2766.352 2766.380 2767.356 2771.389 2772.367 2773.354 2773.378	12.55 11.94 11.99 11.92 11.99 11.99 11.92 11.88 12.32 11.92 12.22	243 5631.513 5660.479 5666.470 6346.488 6369.490 6371.406 6396.384 6498.384 6401.410 6421.345 6422.361	12.22 12.32 12.44 12.78 12.78 12.64 13.00 12.78 12.78 13.21 13.00	243 6431.314 6451.292 6452.292 6453.315 6460.294 6461.285 6462.289 6479.241 6758.494 6759.496	12.78 13.10 12.78 13.00 12.78 13.05 12.78 13.21 11.23 11.23 11.31
2774.351 2774.377	12.22 12.40 11.99	6426.334 6427.356	13.05 13.21	6804.313 6833.268	11.88 11.54

фотографические звездные величины приведены в табл. 41, а кри-

вая блеска изображена на рис. 22, 23.

Кривая характерна для звезд, подобных µ Цефея. Она состоит из циклических волнообразных колебаний переменной амплитуды. Фотографический блеск изменяется от 11^m.2 до 13^m.3. Увеличение

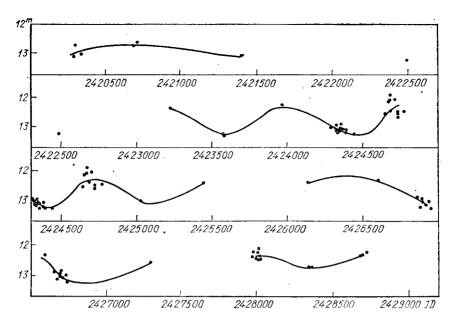


Рис. 22. Кривая изменения блеска UY Scuti.

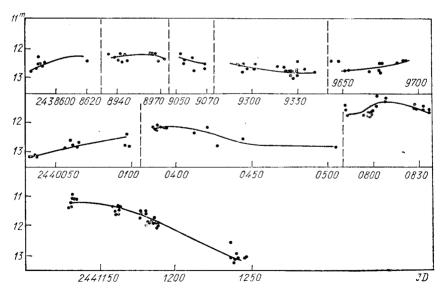


Рис. 23. Сезонные кривые изменения блеска UY Scuti.

Таблица 38. Душанбинские наблюдения UY Scuti

				.	
JD hel	m	JD hel	m	JD hel	m
0.40		040		2.0	
242	10.17	243	.0.12	243	=
9784.39	12.17	3089.30	12.17	3829.33	12.76
9785.33	12.64	3094.28	12.03	3832.30	12.64
9793.32	12.17:	3096.32	12.17	3836.29	12.64
9846.20	12.64	3098.35	12.17	3852.25	12.64
243	10.05	3100.31	12.48	3853.24	12.64
0176.38	12.35	3112.23	(12.64)	3858.23	12.76
0913.27	12.17	3113.26	(12.64)	3362.24	12.64
0940.24	(12.17	3114.26	21.64	3864.23	12.64
1265.32	12.17	3116.29	12.64	3865.21	12.64
1266.32	12.30	3122.30	12.29	3881.16	12.70
1267.32	12.17	3125.23	12.64	3883.18	12.64
1269.30	12.17	3131.32	12.56	3886.16	12.64
1288.24	12.29	3142.19	12.64	4217. 27	12.17
1290.24	12.17	3149.19	12.57	4217.29	12.64
1294.27	12.17	3150.15	12.17	4219.22	12.45
1294.24	12.35	3154.16	12.64	4219.26	12.64
1310.20	12.35	3155.17	12.64	4219.30	12.09
1317.19	12.35	3156.20	12.46	4223.28	12.64
1339.16	12.17	3157.20	11.93	4235.20	12.64
1620.35	(12.17)	3158.23	12.37	4236.22	12.64
1639.29	(12.35	3173.15	(12.17)	4238.22	12.64
2024-24	`12.17	3174.14	(12.64	4249.17	12.64
2025.25	12.17	3175.14	12.64	4272.14	12.64
2030.21	12.47	3176.17	(12.64)	4280.14	12.40
2795.16	12.17	3177.13	12.64	5637.35	12.17
2797.19	12.17	3178.14	12.64	5666.31	12.29
2798.16	12.17	3179.13	12.64	5695.20	(12.64)
2799.18	12.35	3180 13	12.64	6021.28	12.17
2800.18	11.99	3181.14	12.64	6024.32	12.64
2801.18	11.62	3182.13	12.64	6043.26	12.76
2823.13	12.17	3183.14	12.64	6045.27	11.99
2 826.15	11.62	3184.13	12.64	6046.24	12.17
2831.15	12.17	3367.50	12.64	6048.27	12.08
3056.38	12.17	3398.46	(12.64	6071.20	12.17
3062.37	12.64	3417.40	12.64	6434.24	12.64
3065.37	12.33	3418.43	12.52	7851.31	(12.64
3067.36	12.25	3424.43	12.17	7899.18	12.64
3071.42	12.64	3447.38	12.64	9624.44	12.64
3084.30	12.33	3454.34	11.90	244	
3086.32	12.48	3825.34	12.64	0448.27	12.45
3087.35	12.46	3826.34	12.76	0449.28	12.64
				-	

амплитуды наблюдалось около моментов: 2424000, 2436800 и 2441000. Они отделены друг от друга интервалами 12800 и 4200 суток соответственно. Возможно, что цикл медленного колебания близок к 4200 суткам.

Не все последовательные моменты максимумов и минимумов удается определить, поскольку старых наблюдений недостаточно. Те моменты, которые можно определить, а также продолжительности циклов приведены в следующей сводке:

Max JD	Цикл	Min JD	Цикл
2 42 305 0	910	2423610	820
3960	710	4430	770
4670	1730:2 = 865?	5200	1800:2 == 900?
6400	1100.2 == 000.	7000	1000.2 000.
2436750		2436450	
2438960		2440040	560
9750	790 530	0600	750
2440280	670	1350	
0950	070		

Таким образом, отдельные циклы длятся от 530 до 950 суток, что характерно и для μ Цефея.

Оказалось, что переменная очень ярка на фотовизуальных сним-ках Одесской службы неба, так как ее показатель цвета достигает

Рис. 24. Сравнение фотовизуальной (вверху) и фотографической (внизу) кривых блеска UY Scuti.

3.5 звездных величин! В этой области неба особенно сильно межзвездное поглощение. Мы определили звездные величины звезд сравнения, привязав их к фотоэлектрическим стандартам:

Звезда	$m_{P^{\mathcal{U}}}$	Звезда	m_{pv}
BD—12°5085	8.20	BD—13°4992	8.68
BD—13 4995		BD—12 4977	9.19
BD—13 4975		BD—12 5059	9.65

На всех наших снимках были определены фотовизуальные звездные величины переменной (табл. 39). По этим наблюдениям была вычислена усредненная фотовизуальная кривая, которая приведена

в табл. 40. На рис. 24 представлены фотовизуальная кривая блеска (вверху) и фрагмент фотографической кривой (внизу). Ход обеих кривых одинаков, но амплитуды различны. Это вызвано тем, что цвет переменной изменяется с изменением блеска.

Таблица 39. Фотовизуальные наблюдения UY Scuti

Таблица	39. Фотови	зуальные нао	людения С	1 Scuti	
JD hel	m	JD hel	m	JD hel	m
243		243	0.90	243 9710.40	8.99
6426.39	9.47	8233.43	9.29 8.96	9713.37	9.02
6428.36	9.52	8235.44		9732.31	8.91
6429.39	9.46	8259.37	9.13	9733.32	8.94
6432.36	9.65	8263.37	9.02	9734.33	8.62
6434.33	9.62	8281.2 7	9.31	9735.36	8.87
6436.34	9.54	8286.28	9.31		8.62
6451.28	9.50	8636.32	9.02	9738.32	0.02
6454.32	9.49	8637.28	8.96	244	8.85
6456.31	9.49	8666.28	9.02	0392.43	8.94
6781.42	7.90	8943.46	8.96	0393.45	8.96
6814.33	8.40	8946.49	8.96	0396.48	8.94
7167.37	9.42	8966.44	9.08	0420.45	9.34
7519.40	9.47	8967.44	8.99	0441.38	8.46
7525.38	9.45	8973.41	9.00	0793.36	
7526.38	9.45	8976.40	8.96	1128.49	8.37 8.63
7544.32	9.42	8992.36	8.90	1159.42	8.50
7545.32	9.50	8993.32	8.68	1162.43	
7549.29	9.55	8993.35	8.75	1185.32	9.00 8.94
7850.48	9.54	8997.33	8.68	1185.46	8.92
7853.48	9.54	9020.26	8.99	1187.32	9.12
7854.48	9.53	9023.28	8.96	1518.46	9.12
7871.42	9.48	9024.27	8.96	1520.44	9.10
7878.40	8.99	9027.25	9.00	1537.38	
7903.35	9.12	9028.27	8.96	1543.38	8.63
7910.32	9.13	9301.47	9.50	1544.36	8.77
7912.32	9.06	9345.3 4	9.36	1545.37	8.55
8179.52	8.88	9359.34	9.42		
8226.45	8.96	9377.30	9.08		

Таблица 40. Средняя фотовизуальная кривая блеска UY Scuti

Гаолица 40. Средняя фоговизуальная кризал опосия								
JD hel	m_{pv}	n	JD hel	m_{pv}	n	JD hel	m_{pv}	n
243 6431 6454 6781 6814 7167 7535 7852 7871 7890 7911 8179	9.54 9.49 7.90 8.40 9.42 9.47 9.54 9.06 9.10 8.88	6 3 1 1 6 3 1 2 2 1	243 8231 8261 8284 8636 8666 8962 8994 9026 9301 9352 9377	9.07 9.08 9.31 8.99 9.02 8.99 8.75 8.98 9.50 9.39 9.08	3 2 2 2 2 2 6 4 5 1 2	243 9712 9736 244 0394 0420 0441 0793 1128 1160 1186 1525 1544	9.00 8.79 8.92 8.94 9.34 8.46 8.37 8.56 8.95 9.09 8.65	2 5 3 1 1 1 2 3 3 3

Таблица 41. Объединенная средняя кривая блеска UY Scuti*

JD hel	m_{pg}	n	JD hel	mpg	n	JD hel	m_{pg}	n
242 0306 0700 1394 2492 3225 3580 3960 4333 4367 4435 4672 4739 5032 5445 6131 6599 6882 6931 7502 8001 8354 8709 9079 9456 9794 243 0176	12.96 12.87 13.08 13.20 12.41 13.28 12.26 13.06 13.14 13.25 12.20 12.43 13.01 12.43 12.45 12.33 12.99 13.11 12.54 12.30 12.71 12.31 12.55 12.31 12.28	3,CC 2,CC 1,CC 2,CC 1,CC 2,CC 1,CC 1,CC 1	243 0913 1279 1322 2026 2760 2808 3081 3127 3171 3401 3444 3839 3874 4239 5652 5695 6042 6376 6423 6460 6759 6818 7112 7899 8593 8942 8967	12.17 12.22 12.29 12.27 12.07 12.05 12.31 12.52 12.56 12.60 12.19 12.68 12.65 12.29 (12.64: 12.28 12.80 12.95 12.95 11.26 11.26 11.27 13.12 12.64 12.51	1, 8, 3, 3, C, ДДДДДДДДДДДДДДДДДДДДДДДДДДДДД	243 9060 9296 9323 9331 9644 9674 9696 244 0035 0061 0097 0389 0420 0447 0506 0794 0804 0832 1131 1161 1179 1185 1240 1481 1515	12.62 12.39 13.16 12.76 12.66 12.19 12.43	7, M 8, M 7, M 10, M 5, J, M 3, M 4, M 3, M 7, M 3, M 7, M 8, M 7, M 8, M 10, M 8, M 10, M 8, M 8, M

^{*} Д — Душанбе, М — Москва, Л — Львов, С — Симеиз; n — число наблюдений.

Таблица 42. Показатели цвета UY Scuti

			изитени ц	bera er s	cuti				
JD hel	m_{pg}	n	m_{pv}	CI	JD hel	m_{pg}	n	m_{pv}	CI
243					244	•	<u> </u>		
6426	13.05	л	9.47	3.58	0392	12.17	M	8.85	3.32
6427	13.21	$\underline{\mathcal{J}}$	(9.50)	(3.71)	0392	12.17	M	8.94	3.23
6431	12.78	Л	(9.60)	(3.18)	0420	12.17	M	8.94	3.23
6451	13.10	Л	9.50	3.60	0444	12.56	M	(9.34)	(3.22)
6453	13.00	Л	(9.49)	(3.51)	0793	11.71	M	8.46	3.25
8943	12.17	M	8.96	3.21	1129	11.34	M	(8.37)	(2.97)
8946	12.17	M	8.96	3.21	1159	11.34	M	8.63	2.71
8966	12.17	M	9.08	3.09	1159	11.34	M	8.63	2.71
8968	12.40	M	8.99	3.41	1185	11.86	M	8.97	2.99
8972	12.33	M	9.00	3.33	1187	11.96	M	8.92	3.04
9301	12.64	M	9.50	3.14	1520	11.92	M	9.16	
9342	12.79	M	(9.36)	(3.43)	1020	11.92	/V1	9.10	2.76

Можно было бы исследовать изменение показателя цвета путем сравнения сглаженных осредненных кривых блеска, но эта операция мало надежная. Нам представилась другая возможность. Оказа-

лось, что в 17 случаях наши фотовизуальные снимки сделаны в тот же вечер, в который были выполнены или львовские, или москов-

ские снимки в фотографических лучах (табл. 41). Для этих дат мы полу- $m_{\rho g}$ чили показатели цвета звезды простым вычитанием звездных величин. Кроме того, в шести случаях различие дат фотовизуальных и фотографических снимков составляет всего одни сутки, а в течение такого времени звезда не успела бы измениться. Эти определения показателей цвета приведены в табл. 42. Они дали возможность построить зависимость между показателем цвета и фотографической звездной величиной, которая изображена на рис. 25. Действительно, звезда в минимуме блеска краснеет. Левая, нижняя часть рисунка занята определениями, полученными из сравнения львовских и одесских снимков. Середина и правая часть — данными, полученными из сравнения московских и одесских снимков. Мы не склон-

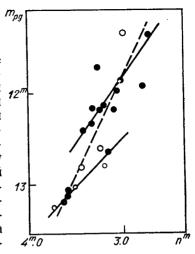


Рис. 25. Зависимость показателя цвета от фотографической звездной величины у звезды UY Scuti.

ны проводить единую зависимость (пунктирная линия на рис. 25), так как цветовые системы львовских и московских снимков могут быть различными. Однако две (параллельные) линии безусловно отражают наблюдаемую тенденцию.

ВG Щита (Scuti)

В общем Каталоге переменных звезд указано, что это, возможно, затменная звезда. Московские наблюдения показывают, что она является неправильной звездой с небольшой амплитудой изменения блеска. Большую часть времени она проводит в минимуме блеска, иногда происходит более или менее продолжительные усиления блеска, как это видно из рис. 26, на котором изображены фрагменты кривой блеска. Пределы изменения фотографического блеска составляют $14^{\rm m}.2-15^{\rm m}.2$.

ВМ Щита (Scuti)

Эта переменная открыта очень давно, но до сих пор не только не исследована, но даже не идентифицирована. Изучение московских снимков показало, что она является неправильной звездой с очень малой амплитудой колебаний блеска. Если бы не усиление ее блеска на 0,4 звездной величины, происшедшее в 1972 г. (рис. 27), то автору вряд ли удалось бы ее идентифицировать. Полное колебание блеска происходило в пределах от 15^m.5 до 16^m.1, причем на протяжении нескольких сезонов блеск звезды практически не изменялся.

Рис. 26. Фрагменты кривой блеска BG Scuti.

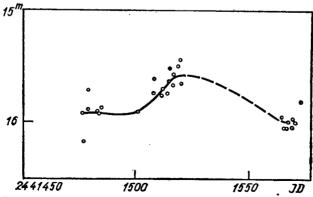


Рис. 27. Фрагмент кривой блеска ВМ Scuti.

BZ Щита (Scuti)

Несколько исследователей причислили звезду к типу RV Тельца. В частности, М. Харвуд [10] составила сводку всех определенных моментов минимума и максимума этой звезды и нашла, что ее период

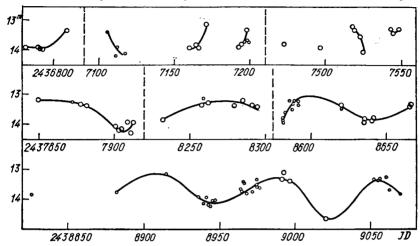


Рис. 28. Фрагменты кривой блеска BZ Scuti по московским наблюдениям.

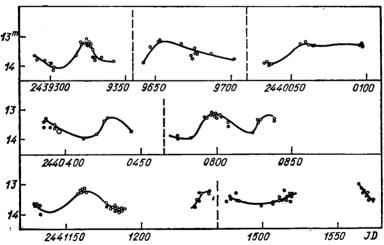


Рис. 29. Фрагменты кривой блеска BZ Scuti по одесским наблюдениям.

близок к 81 суткам. Из рис. 28, 29 видно, что вряд ли можно звезду причислить к этому типу. Как известно, звезды типа RV Тельца большую часть времени проводят в максимальном блеске и периодически ослабляют блеск, проходя через резко очерченные

глубокие минимумы. У данной звезды этого нет. По рис. 28, 29 мы определили моменты максимумов и минимумов блеска:

Max JD	Цикл	М	Min JD	Цикл	m
2437860	415	13.20	2437908		14.20
8275	415	13.20	_	_	_
8603	328	13.00	8645		13.90
8908	305	13.17	8950	305	14.15
8990	82	13.30	9025	75	14.65
9056	66	13.30	_	279	
9324	268	13.25	9304	_	14.10
9653	329	13.15	_	_	
40060	407	13.30	40038	_	13.95
0428	368	13.30	0415	377	13.90
0797	369	13.15	0780	365	14.00
	46			40	•
0833	328	13.25	0820	316	13.85
1161		13.25	1136		13.85

В этой же сводке указаны разности моментов — циклы. Среди них встречаются интервалы 46, 66, 82, 75 суток, так что даже среднее значение трудно образовать. Так как звезду нельзя наблюдать в течение всего года, то трудно установить, какое количество циклов отделяет моменты экстремумов. Таким образом, нельзя также произвести статистику циклов. Формулу, связывающую экстремумы, подобрать нельзя. По-видимому, звезда полуправильная.

СЕ Щита (Scuti)

Это, пожалуй, наиболее интересная из встретившихся мне здесь звезд. Ее блеск изменяется в пределах от $14^m.3$ до невидимости, то

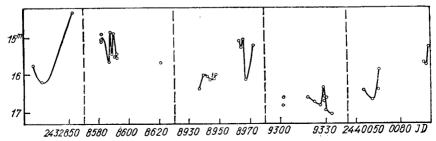


Рис. 30. Фрагменты кривой блеска СЕ Scuti.

есть слабее 17-й величины. На первый взгляд, она напоминает долгопериодическую звезду. Однако моменты ее видимости (вероятно, близкие к максимуму) не связываются формулой, согласно следующей сводке:

Max JD	М	Max JD	M
2432850	14.4	2440098	15.2
7110	16.3	0505	15.7
8590	15.1	1240	15.6

Из нее следует, что цикл, возможно, близок к 375 суткам. Однако на рис. 30 видно, что у звезды происходят быстрые колебания блеска

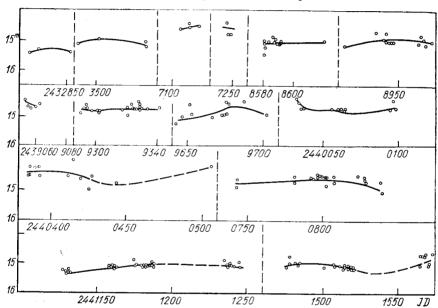


Рис. 31. Фрагменты кривой блеска FQ Scuti.

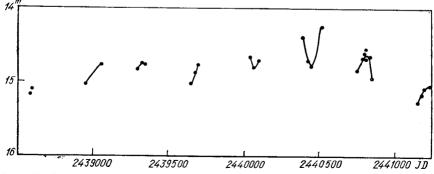


Рис. 32. Осредненная кривая блеска FQ Scuti.

с амплитудой, превосходящей одну звездную величину. Эти быстрые колебания следуют «пачками» с циклом около года. При этом максимальный блеск существенно переменен. Эта звезда подобна V 536 Орла, которая принадлежит к типу быстрых неправильных переменных Is.

FQ Щита (Scuti)

На рис. 31 показаны все московские наблюдения. Из него видно, что блеск переменной испытывает волнообразные, возможно, цикли-

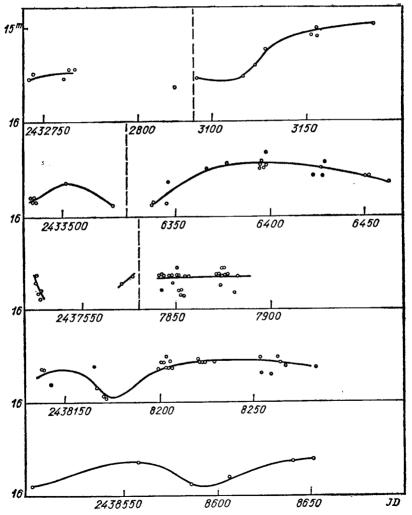


Рис. 33. Фрагменты кривой блеска DQ Serpentis.

ческие колебания; продолжительность цикла около 150 суток. Кроме того, заметно медленное колебание, для выявления которого мы осреднили наблюдения. Результаты осреднения представлены на рис. 32. Блеск в максимуме переменен. Если это колебание циклично, то цикл длится не меньше 2000 суток.

DQ 3men (Serpentis)

На рис. ЗЗ изображены все московские наблюдения этой неправильной звезды. Цикл колебаний блеска длится свыше 150 суток. Заметно значительное изменение максимального блеска. Иногда в максимуме звезда достигает 15-й величины, в то время как в других максимумах он не поднимается выше $15^m.7$.

КЗП 4355-СПЗ 592

Автор оценивал блеск этой полуправильной переменной звезды только на одесских (табл. 43) и симеизских снимках (табл. 44). На рис. 34

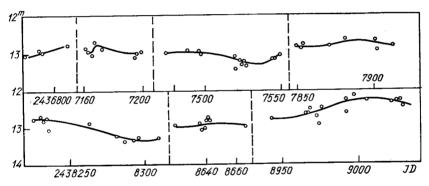


Рис. 34. Фрагменты кривой блеска КЗП 4355.

приведены результаты одесских наблюдений. Из рисунка видно, что звезда испытывает медленные колебания блеска сравнительно небольшой амплитуды с возможным циклом около 380 суток. Отмечены следующие моменты:

Max	JD	Цикл	М	Min JD	Цикл	m
243	7885	0.45	12.6	2437535	755:2	13.2
;	8230	345 770 : 2	12.7	8290	100.2	13.3
	9000	110:2	12.2			

Таблица 43. Одесские наблюдения СПЗ 592

				002	
JD hel	m	JD hel	m	JD hel	m
243 6405.44 6781.42 6791.43 6792.42 6809.35 7161.33 7162.38 7165.34 7167.36 7172.38 7193.32 7195.31 7198.31 7473.49 7488.48 7496.42 7497.46 7519.40 7520.40 7523.38 7524.39	12.61 13.01 12.93 12.77 12.85 12.96 13.01 12.73 12.87 13.09 13.01 12.98 12.92 12.94 13.01 13.07 13.46: 13.20 13.30	243 7545.32 7549.29 7850.48 7853.48 7854.48 7871.42 7882.40 7901.37 7903.35 7913.34 8226.45 8231.45 8233.43 8235.44 8236.40 8263.37 8281.27 8286.28 8292.27 8295.28 8309.23	13.14 13.03 12.82 12.85 12.77 12.79 12.61 12.67 12.90 12.79 12.74 12.68 12.80 12.73 13.06 12.87 13.26 13.35 13.32 13.26 13.26	243 8639.34 8640.32 8641.32 8642.34 8666.28 8943.46 8966.44 8967.44 8968.42 8973.41 8974.44 8976.40 8992.36 8992.36 8997.33 9005.34 9021.26 9024.27 9027.25 9028.27 244	13.01 12.81 12.73 12.81 12.98 12.74 12.61 12.61 12.50 12.68 12.87 12.46 12.61 12.23 12.19 12.30 12.30 12.30 12.30 12.42
$\begin{array}{c} 7525.38 \\ 7526.38 \\ 7544.32 \end{array}$	13.23 13.33 13.14	8620.38 8636.32 8637.28	12.91 12.87 13.05	0396.48	12.46

Таблица 44. Симеизские наблюдения СПЗ 592 = КЗП 4355

JD hel		JD hel		ID 1-1	
3D 1161	"	JD nei	m	JD hel	m
241		242		242	
8529. 3 7	12.42	4668.43	12.28	7987.47	12.69
9124.54	12.61	4680.44	12.61	7988.4	12.33
9586.32	12.62	4702.39	12.33	7992.44	12.49
9598.33	12.87	4712.47	12.04	8011.38	12.70
9973.33	12.44	4723.28	12.46	8013.42	12.74
9983.36	11.92	4725.32	12.19	8361.35	12.91
242		4726.33	12.33	8696.48	12.76
0301.46	12.54	4727.43	12.48	8702.47	12.69
0688.43	12.85	4740.31	12.69	8718.43	12.71
1041.46	12.87	4769.26	12.60	9073.46	12.68
3226.48	13.05	4770.34	12.73	9075.45	12.74
3259.33	12.44	4772.27	12.59	9456.36	12.80
3260.35	12.59	5115.26	12.94	243	
3606.39	12.94	5773.41	12.40	2735.45	12.58
3614.38	12.86	6513.4	12.95	3098.38	12.91
4296.43	12.71	6542.37	12.70	3802.45	12.89
4321.38	12.56	6890.43	12.80	4183.44	12.69
4343.33	12.37	6897.4	12.56	4184.44	12.55
4347.33	12.68	6915.4	12.32	4189.40	12.78
4435.24	12.91	6928.4	12.49	4212.34	12.62
4467.19	12.39	6949.4	12.69		
465 0.4 6	12.38	7980.45	12.75		

Таблица 45. Симеизские наблюдения звезд из созвездия Scutum

JD hel	SU	AN	ВU	BZ
241 8529.374 9124.540 9587.338 9973.328 9983.358		14.41 14.41 — — — — — — — 14.51 14.46	13.60 13.38 13.60 — 13.78 13.49 13.27 13.73	13.16 13.14 13.98 13.70 13.87 13.20 13.87 13.33
242 0283.494 0301.470 0688.432 0711.327	14.61 14.58 — 14.70 14.02	14.26 14.39 14.05	13.62 13.54 —	13.15 13.20 13.27
1041.467 3251.344 3259.334 3260.359		14.70 14.27	13.23	13.49 13.85 13.93 13.48 13.33 13.26
3590.437 3606.398 3614.383	14.61 — — — — — — — ——————————————————————	14.26 — — — 14.32 14.29	_ _ _ _ _	13.26 13.59 13.87 13.94 14.34 13.98
3961.391 4296.440 × 4319.487 4324.475	14.66 15.10 15.35 15.54 — — — —	14.16 14.20 —	12.36 12.84 —	13.29 13.37 13.42 13.65
4328.415 4343.333 4346.412 4347.338	13.92 (14.93 — — 13.90	14.32 14.47 — 14.46	13.87 13.49 ————————————————————————————————————	13.76 13.63 — 13.93
350.432 4352.373 4435.242 4467.187	15.35 14.03 14.04 —	14.60 — — — — 14.16 14.25	13.21 ————————————————————————————————————	13.83 — — — 14.01 14.65 13.20
4650.465 ************************************	14.08 14.66 —	14.32 14.51 14.26 14.20	13.90 13.73 13.63 13.33	13.57 13.76 13.57 13.26

JD hel	SU	AN	BU	BZ
049				
242	14.04			
4669.497 4702.397	14.04	14.00	10.04	13.65
	15.54	14.29	12.84	13.00
4702.397	15.54	14.51	13.06	13.36
4712.477				
4712.477		14.48	12.74	13.15 13.35
4726.308			_	
4726.308		14.26	13.89	13.29 13.29
4727.430				
4727.430 4729.342	14.66	14.15	14.06	13.76
4740.311	14.00	14.49	13.49	13.30
4740.311	15.28			13.57
4740.311	15.26	14.46	13.69	13.37
4769.266	15.24	$\frac{-}{14.26}$	13.49	(14.04 14.24
4772.271			13.83	12.09
4772.271	14.73	14.20		13.98
5115.265		$\frac{-}{14.32}$	13.78	13.59
5115.265	(14.00	14.32	_	
5445.373	(14.93			_
5445.373	15.13	-		
5799.433	13.82	-	-	
5799.433	14.03			13.30
5823.344				
5823.344	-			13.33
6180.365				13.92 13.98
6180.365	_	14.49	13.57	10.90
6513.4	_	14.49	15.57	13.31
6516.478	14.59			13.42
6538.339				14.41
6539.357	14.04	_		13.93
6539.357		14.27	13.99	
6542.366 6542.366		14.42	13.83	14.21 13.98
6957 495	15.34	14.42	13.65	15.86
6857.485	15.34			
6857.485	15.51		12.84	
6890.439 6890.439			12.01	14.43;
7304.344	13.92			14.40.
7980.458	13.92	14.26		13.87
7980.458	14.06	14.51		13.59
7987.473	14.33	11.01		-
7987.473	14.53	14.47		13.87
8013.425	15.54	14.52		
8013.425	15.34	14.21	_	13.37
8347.444	13.90	— ·		-
8361.352	15.31	14.65		13.33
8696.477	15.07	14.32	13.87	13.26
8696.477	15.28	14.23	13.60	13.65
8702.470	15.42	14.32	13.06	13.37
8702.470	15.17	14.48	12.74	13.56
8718.43 3	15.21	14.56	12.84	13.26
8718.433		14.55	12.95	13.26
8720.438	14.37	_	_	-
8720.438	14.45			
0. 100				

JD hel	SU	AN	BU	BZ
242				
8731.486		_		13.93
8731.486				13.87
9037.464		14.48	13.87	13.98
9075.451	14.08	14.65	13.87	13.96
9075.451	14.07	14.49	13.68	13.89
9456.365	15.14	14.16	12.36	13.12
9456.365	15.28	14.24	12.98	
9458.445		_		13.98
243				
0177.468	14.66			
2735.450			13.78	13.53
2736.453				13.42
2772.317		-		13.26
2772.317			-	13.33
3098.377	14.06	14.62		_
3098.377	14.57	14.42		-
3446.458	15.34			_
3446.458	15.42	_	-	
3802.456				13.93
3802.456	-	-	12.74	13.92
4183.450		14.48	13.49	13.59
4183.450	-	14.29	13.74	13.49
4184.441	_		12.65:	
4189.402		14.52	13.04	13.26
4189.402		14.46	13.21	13.09
4212.342		14.52	14.06	
4212.342			14.06	
4306.25:	13.90	-		

Таблица 46. Одесские наблюдения звезд созвездия Scutum

ı	ı						
JD hel	AN	BU	BZ	JD hel	AN	ВU	BZ
243				243			
6781.422		13.92	13.93	7519.400	13.68		13.23
6790.457		_	13.93:	7520.403			13.35
6791.436	14.32	13.41	13.98	7523.387			13.60
6792.427	14.13	13.49	13.98	7525.388	14.19	12.74	14.04
6809.349	14.49	12.75	13.37	7544.326	14.57	13.12	13.28
7161.337	13.68	13.69	13.88	7545.322	14.52	13.87	13.42
7165.343	14.26	13.03	13.81	7549.288	14.18	12.84	13.30
7167.367	14.26	12.74	13.97	7850.482	13.89	14.19	13.29
7172.380	14.32	13.49	13.45	7854.485	14.25	13.12	13.22
7193.324	14.32	13.49	13.94	7878.403	13.62	13.27	13.33
7195.310		13.68	13.81	7882.404	14.19		13.38
7198.308	14.25	13.99	13.33	7901.371			14.12
7473.498			13.85	7903.349	-	13.49	14.22
7488.484	14.06	13.65		7906.364			14.17
7497.461	14.57		13.92	7910.322	14.32		13.98

JD hel	AN	ви	BZ	JD hel	AN	BU	BZ
243				243			
7912.319	14.06	_	14.28:	8667.272			13.34:
7913.342	14.05	13.75	13.96	8943.469			(14.04
8233.438	_	12.71	13.87	8967.446			13.60
8259.376			13.34	8968.424		12.65	
8263.377		14.09	13.30	8973.417	_	12.69	_
8281.2 68		_	13.37	8976.407	-	13.27	
8286.286	_		13.23	8992.367		12.46	13.32
8292.271		13.03	13.35	8993.356			13.11
8295.277		_	13.43:	8997.330		_	13.35
8620.389			13.36:	9021.262	-		14.66
8636.322	13.46	13.69	13.90:	9024.273		12.65	(14.04
8637.285	13.87	12.84	13.81	9027.247	_		(14.04
8641.323	14.25		13.88	244			•
8642.346	14.16	13.00	13.80	0061.449		-	13.29
8666.276	14.19	12.79	13.40	0396.483	14.60	14.16	13.74

Таблица 47. Московские наблюдения звезд созвездия Scutum

JD hel	SU	SY	TT	WY	AY	BU	FU
243							
2826.22	_	13.77	_	15.54	15.98	13.95	
2832.25		13.77	_	15.10	16.21	13.03	
2853.187	· —	13.77	-	15.87	15.46	12.84	
3141.275	_	13.99		15.65	_	14.06	
3488.43	14.93	13.77	15.55	15.70	15.98	13.82	-
3502.36	-	13.77		15.75	14.56	14.06	
3533.22		13.77		15.30	16.26	13.49	
3533.312		_		_	15.26	13.69	-
7106.461	14.63	13.77	15.52	14.70	16.21	12.54	14.55
7112.425	14.27	13.77	15.55	15.32	16.21	13.27	14.67
7197.246	15.18	13.77	14.42	14.51	15.34	12.97	14.55
7198.243	14.75	13.77	15.19	15.87	14.78	14.24	14.79
7199.237	14.23	13.77	15.47	15.54	14.33	13.90	14.76
8582.360 8582.395		$13.77 \\ 13.77$	_	15.99	15.98	13.27	14.92
8582.496	 15.45	13.77	 15.59	15.75 15.69	$15.98 \\ 16.02$	13.41 14.11	14.84 14.99
8582.522	15.45	14.02	15.39	15.12	15.98	14.11	14.99
8584.405	14.45	14.02	15.71	14.89	15.46	13.18	14.84
8587.393	14.55	14.14	15.71	14.89	16.08	13.16	14.84
8588.335	15.43	13.77	15.17	15.87	15.57	14.42	14.84
8589.318	15.70	13.97	15.80	15.82	15.26	13.34	14.84
8590.355	14.38	14.19	15.71	15.09	15.13	13.33	16.12
8591.391	14.72	13.97	14.67	14.19	14.77	13.94	14.70
8592.352	15.24	14.10	14.95	15.82	16.26	13.16	14.70
8592.441	15.54	13.77	15.34	14.07	14.88	14.06	14.55
8621.361	14.76	13.77	14.92	15.04	14.96	13.23	14.73
8936.467	15.43	13.77	15.17	15.04	15.98	12.88	14.55
8940.437	15.24	13.77	15.40	15.48	14.72	13.85	14.55
8942.466	14.58	13.77	14.86	15.31	15.95	13.23	14.55

	774077					· · · · · · · · · · · · · · · · · · ·	
JD hel	SU	SY	тт	WY	AY	BU	FU
243							
8943.510	15.42	13.93	15.29	14.56	16.02	14.24	14.55
	15.42	13.93		15.89	15.71	13.58	
8944.399	14.07	13.80	15.43 14.37	14.91	14.50	14.27	14.84 14.99
8946.451	15.39 14.70	13.90		14.91 15.87	15.94	13.12	14.79
8947.444	14.70		14.73	15.83	15.87	13.12	14.79
8964.303	15.54	13.77 13.86	15.44 15.43	15.64	16.04	14.34	14.55
8965.355	15.26		15.43 14.56	15.04	15.82	13.49	14.84
8966.375	14.47	13.77 13.85	15.00	15.79	14.79	14.25	14.55
8968.299 8972 . 303	15.38	13.77	14.30	15.79	15.86	13.40	14.55
0972.303	14.65	13.77	15.58		14.93		14.00
8975.338	$14.85 \\ 15.22$	13.77	15.77	<u></u>	15.02		_
8975.371			15.43	_	15.02	_	
8975.405	14.93	13.93	15.43		10.24		
8977.441	 15.00	13.86	15.11	 15.44	14.42	14.44	14.99
9053.182				15.44	15.95	14.44	14.55
9055.185	15.24 15.26	14.68	14.43 14.73	15.43	15.93	13.13	14.55
9056.184	15.20	13.77	14.73	15.43	16.43	13.13	14.55
9060.171	14.38	13.86 13.77	14.37 15.15	15.74	16.43	13.21	(16.22
9062.188	14.60	13.77	15.15	(14.99	15.98 (15.94	13.18	(10.22
9069.170	14.02	14.02 13.77	14.94	(15.08	(15.82	14.13	
9069.181 9290.476	14. 93 14.82	13.77		15.26	15.98	13.96	14.99
	14.54	13.77	15.62	15.92	15.84	13.16	14.84
9292.444 9294.469	15.54	13.77	15.02	15.10	14.21	15.10	14.04
9294.508	15.54	13.93	15.47	15.43	15.12		
9296.35	10.04	13.73	10.47	15.41	15.98	13.95	15.13
9297.491	_	13.77	14.37	15.43	15.77	13.20	14.55
9301.488	14.93	13.77	11.01	14.82	15.71	14.47	14.99
9302.441	14.22	13.77	15.2 6	15.26	16.09	13.20	14.84
9302.472	14.33	13.77	14.00	14.22	15.98	12.95	14.84
9318.414	14.65	13.69	15.01	15.21	14.21	12.95	14.55
9321.350		14.80	15.54	14.79	16.09	13.16	15.75
9321.387	14.39	14.34	15.67	15.26 15.54	15.98	12.95	16.10
9323.454	14.76	14.04	15.44	15.54	15.34	12.97	14.55
9325.438	15.34	13.93	15.55	15.29 15.32	16.21	14.37	14.55
9325.477	14.93	14.34	15.54	15.32	15.16	14.42	14.55 14.99
9326.453	14.93	13.92	14.53	14.82	15.98	12.84	14.99
9326.493		13.77	14.37	14.41	15.98	13.36	14.55
9327.433	14.34	13.85	14.73	15.54	16.21	13.80	14.55
9327.475	14.43	13.77	15.27	16.00	15.98	13.87	14.92
9328.459		14.71	15.39	15.26	16.21	13.90	14.84
9329.365		13.93	15.30	14.99	14.37	12.74	14.55
9329.409		13.86	15.55	14.32	15.26	13.19	14.55
9329.447	14.93	14.04	15.55	14.70	15.34	13.16	14.86
9330.369		13.77	15.30	15.87	15.84	13.80	14.86
9330.414		13.77	15.59	15.75	14.56	14.06	14.86
9334.458		13.77	15.30	15.91	15.84 15.84	13.06	14.79
9342.302	14.57	13.77	14.95	14.51	15.84 15.98	14.06 12.84	14.55
9642.428		13.77	15.44 15.62	15.17 15.97	15.98	13.06	14.55
9647.449	14.47	13.77	15.52 15.50	15.48	15.59	13.00	14.79
9652.436	14.67	13.86 13.77	15.50 15.59	15.48	14.87	12.84	14.79
9653.452 9667.387	14.27 15.18	13.77	15.54	15.10	15.98	13.79	14.55
9674.434		13.77	14.89	14.51	16.31	13.10	14.55
9675.461		14.37	15.42	15.70	15.84	13.96	14.55
2010.401	17.70	14.07	10.72	100	20.01	10.00	2 30

83

	SU	SY	TT	WY	AY	BU	FU
243							
9676.391	15.54	14.10	15.59	14.87	15.34	14.06	14.55
9677.450	14.81	14.02	15.67	14.51	15.09	13.68	14.55
9678.426	14.27	13.93	14.37	15.54	13.97	13.95	14.76
9687.419	14.65	13.96	15.55	14.64	15.98	12.97	14.55
9700.351	14.36	13.77	15.59	14.51	15.36	13.83	14.79
9702.371	15.24	14.02	15.44	15.94	14.89	14.26	14.79
244							
0033.403	15.29	13.77	15.56	15.79	15.81	13.78	14.79
0034.410	14.82	13.77	14.55	15.45	15.98	14.37	14.70
0036.371	15.13	14.77	15.30	15.87	15.12	14.06	14.86
0037.392	14.82	14.06	15.54	15.47	14.83	13.30	14.55
0056.434	14.81	13.96	15.49	13.75	14.63	13.16	14.79
0060.468	14.33	13.77	15.49	15.91	15.81	14.30	14.55
0062.499	14.93	13.77	14.00	15.45	15.15	14.06	14.92
0064.484	15.49	13.77	15.49	15.82	15.84	13.33	14.79
0065.447	15.34	13.77	15.55	15.38	16.09	13.90	14.84
0096.332	15.54	13.77	15.55	14.99	15.77	13.12	15.01
0097.332	14.67	13.77	15.59	15.75	14.89	13.78	16.13
0098.328	14.72	13.77	14.83	15.54	14.48	13.25	14.55
0386.442	14.39	13.86	15.19	15.75	14.09	13.83	16.32
0386.465	14.39	13.96	15.22	15.75	14.59	13.95	14.97
0387.408	15.40	13.67	15.29	14.18	16.32	13.87	14.55
0387.431	15.29	13.96	15.47	14.12	16.21	13.21	14.55
0390.441	15.65	15.43	14.28	14.75	15.98	12.97	14.55
0392.481	14.71	13.99	15.55	15.91	14.59	13.23	14.55
0393,441	14.71 15.54	13.96	15.55	14.99	15.98	13.36	14.84
0412,452	15.37	13.77	15.62	15.26	16.09	13.87	14.79
0420.497	14.77	15.39	15.55	15.75	15.77	13.92	14.55
0425.409	<u> </u>	13.99	15.13	15.82	15.63	13.30	14.79
0427.407	14.61	15.80	15.71	14.99	15.21	12.64	14.55
0444.299	15.19	14.05	15.35	14.87	15.24	13.60	14.84
0506.217	15.34	13.80	15.54	15.91	15.81	13.80	14.55
0774.364		15.88	-	15.30	15.81	13.92	14.97
0774.398	14.72	15.88	15.57	15.45	15.46	14.35	14.84
0782.442	15.08	13.97	15.52	15.36	14.21	13.83	14.79
0782.475	15.24	13.93	15.57	15.43	14.89	13.16	14.55
0793.368	14.81	13.90	15.55	14.51	15.12	13.95	14.84
0794.404	15.29	14.17	15.42	15.80	14.48	13.30	14.84
0797.369	15.42	13.92	15.54	15.54	15.98	13.78	14.55
0797.407	14.93	14.06	15.62	15.30	15.98	13.78	14.55
0798.452	15.54	13.77	15.71	15.91	15.98	12.97	16.32
0799.342	14.47	13.93	15.71	14.99	14.78	13.03	14.84
0799.378	14.37	13.93	15.55	15.10	14.97	13.19	14.73
0800.442	14.71	13.96	15.26	14.87	15.09	14.16	14.55
0802.426	14.87	13.90	15.62	15.89	16.37	13.68	14.55
0803.352	14.82	13.93	15.59	14.27	16.32	13.82	14.55
0803.384	14.47	13.96	15.63	14.51	15.98	14.30	14.79
0808.359	14.82	13.96	15.59	15.45	15.98	14.37	14.99
0808.394	14.83	13.77	15.67	15.80	16.12	14.06	15.49
0824.314	14.69	14.05	14.99	15.83	13.97	13.83	14.99
0828.278	15.34	13.99	15.59	15.91	15.32	12.84	14.92
0828.313	14.77	13.93	15.55	15.91	15.46	12.74	15.04
0829.350	15.42	13.93	14.49	15.39	15.34	13.80	14.79

IIDOOONNE	nue muon.						
JD hel	SU	SY	тт	WY	AY	BU	FU
244	· · · · · · · · · · · · · · · · · · ·						
0833.267	14.82	15.62	15.42	14.18	15.77	13.78	14.99
0833.321	14.87	15.70		14.80	15.98	12.84	15.28
0838.291	15.26	13.77	15.71	15.87	16.09	14.06	15.13
0838.335	15.34	13.77	15.44	15.91	15.98	13.72	16.42
1129.453	14.39	13.96	15.48	15.36	15.59	13.72	14.45
1130.449	15.37	13.96	15.63	15.46	14.84	12.96	14.55
1130.484	15.64	13.77	15.62	15.70	15.15	12.84	14.55
1131.433	14.79	13.99	14.15	14.67	16.05	13.56	14.70
1131.474	14.88	13.96:	14.33	14.99	15.05	13.65	14.70
1132.455	14.50	13.77	14.96	15.81	16.14	14.35	15.95
1133.406	15.54	14.02	15.33	15.45	15.84	12.93	14.55
1159.394	14.83	14.02	15.48	15.50	15.23	13.63	14.84
1159.394	14.93	13.99	15.43	15.86	15.72	13.24	14.84
1160.371	14.93	13.99	15.63	15.46	13.72	13.29	14.79
	14.24	13.99	13.63	15.46	13.97	13.25	
1160.402 1161.375	15.54	13.96	14.63	14.65	16.21	13.23	14.55
1162.398	14.83	13.77	15.36	15.36	16.05	12.84	14.99
1162.336	15.16	13.77	15.43	14.22	16.26	12.98	14.99
1163.377	14.37	13.77	15.57	15.81	15.97	13.36	14.99
1176.375	14.50	13.77	15.18	15.91	15.97	13.35	14.55
	15.44	13.77	15.30	15.67	15.23	14.06	15.04
1177.343 1177.377	15.44	13.77	15.57	15.07	15.23	13.96	14.99
1180.301	15.44	15.58	15.63	15.63	15.97	14.24	14.99
.334	15.54	15.70	14.42	15.75	15.97	13.90	14.73
1181.376	15.31	13.77	15.03	14.92	16.26	13.21	14.92
1182.387	14.25	13.96	15.63	13.85	15.97	14.27	14.97
1183.356	15.31	13.96	15.60	15.54	15.39	13.87	14.84
.390	15.54	13.77	15.60	15.91	15.63	13.31	14.55
1184.344	14.93	13.77	15.57	15.40	14.09	13.31	14.99
.377	15.34	13.77	15.57	15.45	14.63	13.49	14.55
1185.339	14.67	13.77	13.83	14.12	16.31	13.78	14.92
.372	14.50	13.77	14.46	14.72	15.34	14.16	14.92
1187.347	14.89	15.96	15.57	15.54	16.31	13.73	14.84
.379	14.93	15.70	15.63	15.54	15.80	13.72	14.79
1188.345	14.55	14.18	15.55	14.51	16.05	13.90	14.73
.377	14.55	14.07	15.62	15.17	16.07	13.90	14.55
1236.231	15.54	13.77	15.13	14.38	15.72	14.27	14.84
1237.205	15.34	13.77	15.55	15.80	14.96	12.74	14.79
1238.217	14.46	13.77	15.55	15.36	14.96	13.68	14.55
1239.217	15.28	16.00	14.52	14.51	15.97	13.78	14.79
1240.209	14.85	14.05	14.73	15.43	16.05	13.23	14.79
1241.208	14.36	13.77	15.51	15.81	15.84	13.83	14.55
1245.244	15.30	13.77	15.13	15.54	16.09	12.99:	14.79
1246.217	15.26	14.99	15.62	14.25	16.36	13.68	14.79
1477.414	14.10	13.77	15.61	15.90	15.04	13.82	14.35
.452	14.16	13.92	14.86	15.68	15.00	13.83	14.55
1479.452	15.24	13.93	15.20	15.13	16.29	14.06	14.55
.482	15.17	13.93	15.36	15.21	14.87	14.06	14.55
1483.459	14.28	14.03	14.73	14.65	15.03	12.84	14.55
1484.447	15 .3 6	13.92	15.20	15.36	14.01	13.49	14.73
.482	15.39	14.03	15.43	15.36	14.01	13.82	14.55
1485.460	15.19	13.93	15.44	15.38	15.72	14.06	14.55
1501.374	15.10	14.02	15.60	16.00	14.89	13.95	14.99

JD hel	SU	SY	TT	WY	AY	BU	FU
244				_			
1508.397	14.33	13.92	15.10	15.30	14.21	13.17	14.55
.439	14.36	14.02	15.41	15.48	14.71	13.43	14.55
1512.451	14.83	14.03	14.65	15.81	15.80	12.84	14.70
.483	14.43	13.93	15.08	16.10	16.21	12.78	14.55
1514.352	14.43	13.77	15.23	15.71	14.89	13.82	14.55
.388	14.69	13.77	15.25	15.90	14.55	13.83	14.55
1515.438	14.28	14.06	15.41	15.75	14.49	12.78	14.55
.471	14.12	13.93	15.43	16.18	14.21	13.09	14.70
1517.438	14.52	13.77	15.00	14.07	16.21	13.98	14.55
.470	14.44	13.99	15.00	13.96	15.84	13.34	14.55
1519.453	15.61	15.77	15.49	15.38	15.35	13.92	14.91
.485	15.34	15.82	15.49	15.43	16.21	14.30	14.55
1520.483	14.69	13.96	14.85	14.46	15.12	12.84	14.84
.517	14.86	13.96	14.00	14.80	15.97	13.04	14.55
1565.248	15.17	14.02	15.53	15.54	16.12	13.92	14.70
1566.244	15.45	13.99	14.42	15.26	15.35	13.04	14.70
1567.243	14.32	13.93	15.09	14.40	14.66	13.72	14.95
1568.236	14.78	14.06	15.24	15.54	16.26	1 4.0 6	14.91
1569.240	14.93	13.77	15.38	15.36	15.97	13.24	14.55
1570.241	14.32	14.03	15.56	14.83	16.26	13.87	14.55
1571.253	14.12	15.86	13.90	14.80	16.26	13.38	14.55
1573.250	14.48	13.96	15.38	15.30	14.59	13.65	14.67

Таблица 48. Московские наблюдения звезд созвездий Scutum и Serpens (снимки области SA 110)

JD hel	BU Sct	FT Sct	FU Sct	DQ Ser	DV Ser
243					
2743.378	14.03	17.10	15.13	15.52	17.04
.451	14.25	17.10	15.44	15.54	17.00
2745.407	13.97	16.07	14.77	15.48	17.00
2761.407	14.30	16.12	14.55	15.54	17.00:
2764.379	14.11	16.12	15.06	15.43	17.18
2767.339	14.11	16.12	14.84	15.44	17.13
2770.406	13.43	17.31	14.04	10.44	17.12.
			14.60	<u> </u>	15.98
2820.255	14.11	17.10:	14.62		
.285	14.11	16.70	15.06	15.59	16.06
2826.219	14.33	17.14	14.55		16.26:
2832.253	12.88	17.31	14.99	_	16.88
2853.185	12.93	16.90	16.26		16.88
2856.27	_	_	14.55:		
3061.468	14.14	16.12	15.04	_	17.04
3092.425	_	_	_	15.54	17.00
3098.402					16.22
.434	_	16.51;			16.40
3117.385		16.90:		15.52	15.78
3123.444		16.12		15.40	16.70
3129.426	13.51	16.20	14.92	15.22	17.18
3141.275	14.09	16.82	14.55		15.90

Прооолжение таол. 40							
JD hel	BU Sct	FT Sct	FU Sct	DQ Ser	DV Ser		
042			_				
243	10.00	17.10	15.13		16.34		
3147.350	12.80	17.10	14.99		16.55		
3150.296	$12.70 \\ 12.80$	16.12 16.32	14.91		17.00:		
.322 3153.360	13.17	17.26	15.16	15.08	17.18		
3156.351	13.59	16.93	15.08	15.09	17.18:		
	14.11	17.02	14.99	15.02	17.00		
.377 .403	14.11	16.90	15.04	15.09	17.18		
3186.246	14.11	16.06		14.97	15.73		
3482.436	13.97	16.48	14.61	-			
3483.411		17.31		15.81	17.00		
.449					16.77		
3484.448	_	(16.9	_	15.85	16.80		
3485.458		(16.9		15.81	16.36		
3486.468	12.76	16.20	15.04	15.85	15.80		
3502.493	14.25	16.17	14.77		16.85		
.542	13.28	16.12	14.90	15.64	17.18		
3526.265	14.52	(16.5	15.04		17.35		
3527.281	12.96	` —	14.92	15.88	17.35		
3528.293	14.30:	_	_	_	_		
3529.265	14.05:		15.10	_	_		
3533.259	14.07	16.06	14.62	_	16.01		
.314	13.97:	16.06	14.84		15.90		
3 863.359	12.96	16.12:	(16.3)	_	16.80		
3892.389	12.80	_	_				
38 95.329		_	. =	15.73	16.40		
4623.339	14.11	_	15.18:	15.64	17.00		
5307.407	13.78:				10.00		
5334.370	14.56	16.90:	15.21	15.64	16.22		
5335.353	12.76	16.38:	14.92	15.64	15.80		
5337.355	14.17	16.51:	14.70	15.72			
5362.302	13.09	_	14.55: 15.18		16.22:		
5365.273	13.28	(16.4	14.50	15.88	16.80		
5366.257	14.52	(16.4 16.12:	14.67	15.94	(17.0		
5369.252 6074.285	14.21 14.16	10.12.	14.07		(1 .		
.319	14.10	_	14.55		_		
6338.413	13.25	_	14.35	15.88:			
	13.10	16.90	14.55	15.86	(17.00		
.446 6341. 469	13.90		14.97	_	· —		
6345.512	12.84	16.07	14.70	15.87	15.76		
6346.497	14.15	16.38	14.55	15.64	16.06		
6367.451	13.57	16.90:	14.70	15.49	16.40		
6377.412	12.64	16.06	14.79	15.46	16.11		
6395.445	12.84	_	15.18	15.49	16.22		
6395.475	12.98	-	16.22	15.46	15.90		
63 96.396	13.56	17.15	14.55	15.43	16.35		
6397.381	14.16	16.70	14.79	15.49	16.50		
6398.374	13.18	16.51	14.55	15.32	16.17		
.421	12.36	16.12	14.55	15.46	16.40		
6424.306	14.24	15.00	14.97	15.57	16.40: 16.64		
6427.392	12.72	17.20	14.55	15.49 15.57	10.04		
6428.427	13.98	15.96	14.55 14.70	15.43	16.80		
6429.380	13.92	19.90	14.70	10.40	10.00		

22 positive nas. 10								
JD hel	BU Sct	FT Sct	FU Sct	DQ Ser	DV Ser			
243								
6451.302	13.93	16.90	14.99	15.57	(16.4			
6453.331	13.89	17.20:	14.55	15.57	(17.0			
6463.238	13.63	16.22	14.55	15.64	16.03			
7524.417	14.15	17.10	14.55		16.15			
7525.323	14.06	(16.9	16.32	15.72	16.03			
.439	12.98	(16.1	14.55	15.64	16.03			
7526.425	13.98	`	14.92	15.85:	16.20			
7527.332	14.36	16.43	14.84	15.90	-			
.458	13.36							
7528.323	12.93	-	14.70	15.79	16.22			
.435	13.32	-	—	-				
7529.323	13.68	-	14.79	_	_			
7549.304	13.09	-	14.55	_	_			
7551.269	14.06	(16.9	14.84	•	(16.40			
7571.245	13.17	16.42	14.79	15.72	15.98			
7572.257	14.37	(10.1	14.55					
7577.254	13.96	(16.1	14.55	15.64	16.31			
7841.406 7842.349	13.02	(16.1	14.79	15.64	(17.0			
7842.455	13.49	_	14.92	15.80	(17.0			
7843.393	14.33 14.27	-	14.79 14.84	15.64				
7846.520	13.18	(16.9	14.86	15.64 15.64	16.70: 15.96			
7847.343	15.16	(10.5	14.00	15.64	15.84			
7847.445	14.15		14.92	15.04	15.76			
7848.443	14.14	16.23	15.04	15.72	16.50			
7850.379	13.78	16.70	14.76	15.64	16.60			
7850.482	14.30	16.68:	14.92	15.56	16.70			
7851.322	14.22	-	14.99	15.80	16.60			
7851.428	13.15	16.70	14.55	15.64	17.20			
7852.338	13.02	16.72:	15.13	15.85	16.60			
7852.439	13.65	17.10:	14.79	15.80	16.60			
7853.353			1450	15.85	16.60			
7854.414	12.64	16.32	14.79	15.64	16.40			
7856.443	13.98	16.90:	14.84	15.64	16.40			
7871.355 7872.352	13.96 14.47	17.00	15.04 14.79	15.64 15.64	15.90 15.90			
7873.401	13.33	17.00	14.79	15.75	16.28			
7874.333	13.87	16.20	14.55	15.56	16.36			
7974.428	14.22	16.06	14.97	15.64	16.40			
7875.360	13.68	-	14.92	15.56	16.22:			
7876.335			_	15.64	16.36			
7877.366	14.42	(16.9	14.92	15.64	16.50			
7881.336	13.30	Ì6.90	14.92	15.80	16.70			
7 882.371	13.96	(16.7	14.92	15.64	(16.40			
8138.446	<u></u>	-		15.64	(17.0			
8139.547	14.30	16.90	14.55	15.64	17.00			
8143.486	12.36		14.79	15.80	16.40:			
8166.443	13.96	17.10	14.79	15.64	16.40			
8167.446	12.36	17.10	14.84	15.86	15.80			
8171.440 8172.434	14.13	17.10	14.76	15.94	16.16			
8200.454	14.13	16.12	14.76	15.96 15.64	16.09 17.10			
8201.362	14.22	10.12	14.92	15.58	17.10			
0201.002	4 1.44	_	1.02	10.00				

Прооолжение таол. 40							
JD hel	BU Sct	FT Sct	FU Sct	DQ Ser	DV Ser		
243 8203.456 8204.378 8204.481	14.30 13.82 12.78	(16.7 (16.4 17.10	14.86 14.55 14.79	15.58 15.64 15.52	(17.0 (17.0 17.00		
8205.414 8206.396 8207.416 8221.315	13.39 14.32 12.69 13.11	16.12 16.70 16.90	14.92 14.55 14.79 14.92	15.64 15.58 15.64 15.56	17.00 (17.0 17.20		
8222.372 8223.320 8224.371 8230.352	14.15 12.74 14.35	16.59 16.51 17.00	14.79 14.70 14.86	15.58 15.58 15.58 15.58	(17.0 16.88 17.00		
8230.486 8254.341 8255.306 8260.301	14.38 12.66 12.98	16.90 17.10 17.10	14.70 14.55 14.55	15.52 15.72 15.72	17.00 16.90 17.00 15.78		
8261.297 8263.385 8264.319 8267.467	13.58 13.34 14.13 14.28:	16.90 16.21 16.70	15.28 14.79 14.79 14.79	15.52 15.59 15.64	15.83 16.33 16.31 16.40		
8284.331 8501.527 8502.565 8552.455	13.39 12.36 13.96: 13.21	17.10 16.21	14.92 14.92 14.92 14.55	15.64 15.90	15.90 16.40 (16.40 17.00		
8559.475 8560.505 8561.467 8562.480	13.39 13.78 13.78 12.60	16.90 17.10 17.10	14.55 14.88 14.92 14.79	15.64 — — —	15.84 15.84 15.90 15.87		
8563.484 8564.467 8579.378 8580.388	13.30 14.36 13.58 14.24	16.07 16.70 16.32 16.68	14.79 14.55 14.55 15.95		16.11 16.11 16.88 17.00		
8581.406 8582.395 8587.468 8590.511	13.23 14.06 14.33	17.23 —	14.79 14.84 14.79 14.55	15.88	16.40 16.09 16.22:		
8606.312 8613.423 8614.476 8616.428	13.82 13.28 14.36 13.87	16.57 16.90 16.12:	14.99 14.99 — 14.92	15.80 — — —	16.03 16.22 — 16.76		
8617.401 8618.359 8619.360 8621.395	14.22 12.57 13.87 13.28	16.90 17.23 16.38	14.92 14.92 14.84 14.92		17.00; (16.4 17.10 17.00		
8621.433 8638.270 8639.280 8640.311	13.40 14.06 14.30	16.57: 17.09 17.13	14.92 14.55 14.92	 15.64	16.80 16.76 17.00		
8641.265 8642.267 8643.272 8644.293	13.87 13.00 13.78 13.96	16.57 16.07 16.73 16.90	14.55 14.55 14.79 14.79		16.76 17.30 17.00 17.10		
8645.279 8646.276	13.07	17.23 16.79	14.55 14.55	_	17.00 17.10		

JD hel	BU Sct	FT Sct	FU Sct	DQ Ser	DV Ser
243 8646.310 8647.305 8648.330 8650.295 8651.325	13.87 13.25 13.82 12.54 14.06	17.31 16.07 —	14.55 14.55 — 14.92 14.99		17.00 — — — — — 16.22

Таблица 49. Московские наблюдения звезд созвездия Scutum

- domina	o. mocko	BCRNC HUOV	подсини зв	сэд созвез,	ANN Scutur	
JD hel	AN	BZ	СО	cz	FI	FT
243 2826.22 2832.25 2853.187 3141.275 3488.43 3502.36 3533.22 3533.312 6367.500 6401.396 6750.473 6751.473 6813.376 6867.227 7106.461 7112.425 7197.246 7198.243 7199.237 7843.444 7847.491 7872.398 7873.450	AN 14.03 14.11 14.57 14.60 14.46 14.13 14.13 14.25 14.16 14.48 14.17 14.18 14.24			16.46 16.29 17.01 ————————————————————————————————————		FT
7873.450 7877.412 7881.384 7882.432 7905.307 8204.419 8206.441 8224.416 8260.349 8559.504		13.30		16.24 16.98 16.37 16.11 16.37 16.41 16.09 16.08 16.97 16.61	 	
8582.360 8582.395 8582.496 8582.522 8584.405 8587.393	14.16 14.11 13.94 14.32 14.38 14.32	13.83 13.90 13.93 13.85 13.65 13.31	15.17 15.34 15.36 15.66: 15.78 16.21	16.57 16.50 16.50 16.24 — 16.50	14.96 14.90 14.96 15.00 (15.30	17.23 (16.9

просолжен	ue muon.	7.7				
JD hel	AN	BZ	со	CZ	Fl	FT
243						
8588.335	14.41	13.54	16.31	16.65	15.52	16.59
8589.318	14.41	13.31	16.47:	16.34	15.86	16.12
8590.395	14.66	13.22	16.06:	16.18	16.05	
8591.403	14.56	13.22	16.63	15.85	16.05	16.59
8592.352	14.53	13.36	15.99	15.91	16.10	(16.9)
8592.441	14.69	13.24	16.31	15.91	(15.95	17.10
8621.361	14.53	13.49	16.14	16.09	Ì6.45	16.06
8825.612	_	13.87	_	16.24		_
8882.541		13.76	_	16.16		
8905.511				16.61	_	
8915.505	14.48	13.18	-	16.0 9		_
8935.430	_	_		16.18	-	
8936.467	13.91	13.90	15.90	16.67	15.49	16.12
8940.437	14.15	14.16	15.17	16.70	15.16	17.13
8942.466	14.03	13.93	15.56	16.85	15.20	16.79
8943.510	14.02	14.21	15.43	16.34	15.54	
8944.399	14.11	14.25	15.62	16.13	15.75	16.90
8944.429	-	_		16.07	. — _	
8946.451	14.14	14.04	15.81	16.11	15.87	16.02
8947.444	14.20	14.04	15.90	16.13	16.10	16.12
8964.303	13.74	13.67	16.17	16.12	16.40	17.10
8964.395		13.16:	-	15.99		
8965.355	13.61	13.73	16.43	16.10	15.76	16.68
8966.375	13.87	13.42	16.63	16.37	15.39	17.20
8968.299	13.80	13.83	_	16.61	14.90	16.17
8968.362		-	_	16.86	_	_
8968.393		_		16.96	-	_
8968.425				16.92	15.39	17.06
8972.303	14.00	13.76	15.43	16.37	10.59	17.00
8975.338	14.03	13.34	_	16.09 15.97		
8975.371	14.05	13.50		16.08		_
8975.405	14.05	13.58		15.99		
8977.441		13.63	_	15.88		_
8991.297		_		15.85		
8991.334		_	_	15.91		
9052.216 9052.254	_	_		16.33		
9052.254	14.46	13.36	16.71	15.86	16.55	
9053.162	17.70	70.00		16.24	_	
9055.185	14.44	13. 3 6	16.63	16.13	15.69	
9055.218				16.11	_	
9055.252		-		16.13		
9056.184	14.24	13.34	15.83	16.13	15.25	_
9060.171	13.80	13.31	15.23	16.72	15.21	
9060.200				16.80:		
9060.237			-	16.89:		- - - - - - -
9062.188		13.67	15.33	_	15.46:	_
9062.206				16.94	-	
9069.170		13.85		_		
9069.181	14.13	13.85				
9290.476	13.84	13.67	16.06		16.05	17.06
9292.444		13.76	16.48		15.95	17.06
9294.469	14.06		16.79	_	15.52	_

просолже	пис тиол.	73				
JD hel	AN	BZ	СО	CZ	FI	FT
243						
9294.508	14.00	_		_	15.52	_
9296.32	14.00	13.76			15.30	-
9297.491	13.94	13.81	15.83	16.20	15.20	16.90
9301.488	14.09	13.97	15.62	16.09	15.43	
9302.441	14.10	14.04	15.33	15.92	15.84	17.23
9302.472	14.00	14.11	15.23	16.13	15.86	17.06
9318.414	14.15	13.61	15.34	16.08	16.28	17.23
9321.350	14.06	13.24	15.43	16.62	16.35	16.51
9321.387	13.91	13.27	15.37	16.45	16.32	17.19
9323 . 45 4	13.59	13.25	15.90	17.03	15.66	17.10
9325.438	13.87	13.28	16.71	16.68	15.07	16.12
9325.477	13.89	13.16	16.63	_	14.98	
9326.453	14.00	13.27	16.56	16.41	15.03	(16.9
9326.493	13.84	13.22	16.56	16.41	15.07	_
9327.433	14.06	13.27	16.79	16.48	15.43	
9327.475	14.00	13.34	16.63		15.07	
9328.459	14.06	13.42	16.79	16.65	15.19	10.70
9329.365 9329.409	13.97	13.72	16.47	16.17	15.17	16.79
9329.447	14.00	13.70 13.70	16.48	16.17	15.10	16.59
9330.369	14.04	13.78	16.56 16.56	16.13	15.10	16.90:
9330.414	14.04	13.76	16.31	15.88 15.82	15.62 15.73	16.06 15.94
9334.458	14.15	13.76	15.36	16.20	16.09	(16.9
9342.302	14.32	13.87	15.74	16.48	15.69	(16.9
9642.428	14.20	13.92	14.49	16.62	15.69	(10.5
9647.449	14.05	13.36	15.28	16.92:	16.50	17.10
9652.436	14.09	13.22	16.55	16.11	14.77	
9653.452	14.03	13.12	16.71	16.11	15.10	(16.9
9667.387	14.54	13.31	_	15.85	15.03	`
9674.434	14.69	13.70	15.43	16.24	15.30	
9675.461	14.85	13.76	15.59		16.50	
9676.391	14.72	13.42	15.09	16.98	16.50	(16.9
9677.450	14.72	13.59	15.43	17.00	16.22	16.12:
9678.426	14.46	13.61	15.36	17.03	16.28	10.10
9687.419 9700.351	$14.05 \\ 14.26$	13.61	16.26		15.69	16.12
9700.331	14.29	13.85	15.74 16.42:	16.37	15.30 15.20	(16.9
244	17.23	10.00	10.42.	10.57	10.20	
0033.403	14.26	13.89	15.78	16.50	16.22	(16.9
0034.410	14.49	13.88	15.81		16.50:	(10.0
0036.371	14.46	13.98	15.05	16.11	15.69	
0037.392	14.16	13.85	15.25	15.85	15.41	
0056.434	14.20	13.28	15.62	16.24	15.30	16.38
0060.468	14.11	13.24	15.74	16.91	15.95	16.57
0062.499	14.20	13.32	16.55	-	16.50:	(16.9
0064.484	14.46	13.34	16.48	16.80	15.95	16.90
0065.447	14.52	13.34	16.06	16.37	15.76	16.70
0096.332	14.49	13.34	15.90	16.24	15.30	17.23
0097.332	14.49	13.28	16.12	16.40	14.77:	16.07
0098.328	14.43	13.34	16.48:	16.13	14.84	16.45:
0386.442 0386.465	14.32 14.18	13.59 13.36	16.26 16.23	16.64	15.20	16.00
0387.408	14.18	13.34	16.23	16.80 16.39	15.30 15.69	16.07 16.12
0007.700	17.10	10.07	10.41	10.03	10.03	10.12

11 роболже	nue muon.	15				
JD hel	AN	BZ	СО	CZ	FI	FT
JD hel 244 0387.431 0390.441 0392.481 0393.441 0412.452 0420.497 0425.409 0427.407 0744.299 0506.217 0774.364 0797.369 0797.407 0798.452 0799.342 0799.342 0799.378 0800.442 0802.426 0803.352 0803.384 0808.359 0808.394 0824.314 0828.278 0828.313 0829.350 0833.267 0833.321 0838.291 0838.391 1130.449 1130.484 1131.474 1132.455 1133.466 1159.394 1160.371 1160.402 1161.375 1162.398 1162.430	AN 14.26 14.54 14.60 14.60 14.15 14.49 14.60 14.12 14.00 14.12 14.02 14.05 14.03 13.89 13.89 14.03 14.13 14.60 14.12 14.26 14.23 13.95 13.86 14.16 14.12 14.05 14.17 14.05 14.17 14.05 14.17 14.05 14.17 14.05 13.88 13.89 13.89 13.86 13.81	BZ 13.30 13.59 13.50 13.61 13.92 13.81 13.36 13.28 13.77 13.90 13.97 13.96 13.24 13.15 13.14 13.18 13.15 13.22 13.24 13.42 13.34 13.34 13.28 13.67 13.73 13.67 13.73 13.67 13.73 13.96 13.24 13.18 13.18 13.24 13.18 13.28	16.34 16.51 16.43 16.30 15.11 15.90 15.32 15.36 16.43 16.39 15.43 15.77 15.81 15.71 16.22 16.56 16.56 16.56 16.56 16.56 16.53 15.13 15.13 15.13 15.34 15.37 16.41 16.26 16.31 16.26 16.570 16.50 16.70 16.48 16.70 16.48 16.70 16.48 16.70 16.56 16.56 16.70 16.56 16.70 16.56 16.31 16.26	16.40 15.85 15.84 16.11 16.94 16.14 16.16 16.00 16.98 16.85 16.37 16.30 16.83 16.68 — 17.09: 16.70 16.50 16.41 16.56 16.17 16.05 16.11 16.80 16.74 16.97 — 16.11 16.09 16.02 15.95 16.03 16.00 15.95 15.95 15.95 15.95 16.00 15.92 16.33 16.30	FI 15.73 15.76 15.82 15.19 15.46 15.95: 15.00 15.19 15.30 14.96 15.95 15.19 15.00 14.96 15.95 15.19 15.69 15.84 15.84 15.69 15.84 15.84 15.69 15.30 15.17 15.19 15.95 16.35 15.73 16.28 16.28 16.28 16.29 16.22 16.70 16.19 16.28 16.28 16.28	FT 16.12 16.90 16.12 16.90 17.31 16.70 16.12 16.90 17.06 16.59 16.12 16.90 17.06 16.59 16.43 16.12 16.43 16.12 16.38 16.51 17.20 16.38 16.51 16.38 16.51 16.38 16.51 16.38 16.51 16.38 16.51 16.36 16.51 16.70 17.10 16.90 17.20
1176.375 1177.343 1177.377	14.32	13.67 13.74	16.63 16.47	16.15 16.36 16.39	16.50 16.28 16.50	17.31 17.20

просольне	1					
JD hel	AN	BZ	СО	CZ	FI	FT
244						
1180.301	14.46	13.85	16.41	16.36	15.62	16.12
1180.334	14.25	13.83	16.41	16.24	15.62	16.06
1181.376	14.54	13.79	16.38:	16.68	15.10	
1182.387	14.44	13.76	15.76	16.98:	14.90	17.31
1183.356	14.41	13.83	15.31	16.98	14.96	17.13
1183.390	14.25	13.85	15.23	17.03	15.07	17.31
1184.344	14.19	13.85	15.13	17.06	15.17	16.64
1184.377	14.18	13.83	15.18	17.02	15.05	17.13
1185.339	14.06	13.81	15.23	16.68	15.17	15.94
1185.372	14.18	13.85	15.23	16.83	15.07	16.06 17.10:
1187.347 1187.379	14.22 14.21	13.85 13.83	15.36 15.34	16.61 16.30	15.62 15.69	17.10. 16.74
1188.345	13.89	13.89	15.36	16.14	15.95	(16.9
1188.377	14.11	13.87	15.36	16.17	15.62	(10.3
1236.231	14.11	13.76	15.16	16.11	15.95	(16.9
1237.205		13.54	15.43	16.10	16.28	(10.0
1238.217	14.41	13.56	15.21	15.86	15.95	16.25
1239.217	14.13	13.31	15.66	16.13	15.69	16.32
1240.209		13.31	15.59	16.02	15.4 6	(16.9
1241.208		13.54	15.77	16.24	15.03	17.10
1245.244	14.17	13.31	16.63	16.94	15.19	
1246.217	14.32	13.27	16.63	16.94	15.20	16.90
1477.414	14.85	13.56	15.43	16.50:	15.22	16.90:
.452		13.56	15.43	16.74	15.30	(16.90
1479.452		13.49	15.51	16.68	14.94	16.38
.482		13.42	15.63	16.50	14.94	16.12
1483.459		13.34	15.77	16.12	15.21	16.96
1484.447		10.50	16.14	16.02	15.70 15.50	16.77 16.90
.482		13.56 13.56	16.26 16.51	16.02	15.66	16.51
1485.460 1501.374		13.70	16.20:	15.91	16.30:	10.51
1501.374		13.65	15.36	16.76	15.16	16.90
.439		13.67	15.43	16.94	15.15	16.90
1512.451		13.49	15.28	16.20	15.12	16.41
.483		13.56	15.27	16.40	15.15	16.71
1514.352	14.16	_	15.36		15.30	17.02
.388		13.54	15.36	15.83	15.60	16.90:
1515.438		13.53	15.59	15.85	15.30	16.74
.471		13.22	15.66	16.09	15.78	17.14
1517.438		13.54	15.99	16.11	16.24	16.28
.470		13.42	15.98	16.37 16.40	16.30 16.38	$16.64 \\ 17.02$
1519.453		13.34	16.48 16.50	16.57	16.50	16.90
.485 1 5 20.483		13.54 13.42	16.56	16.68	16.03	16.90
.517		13.34	10.00	16.62?	15.90?	
1565.248		13.10	15.53	16.30	16.33	16.59
1566.244		13.20	15.43	16.20	15.90	(16.90
1567.243		13.31	15.63	16.57	15.60	
1568.236		13.25	15.33		15.08	
1569.240		13.42	16.09		14.94	16.38
1570.241		13.34	16.41	16.92	15.30	16.51
1571.253		13.54	16.63	 .	15.54	
1573.250		13.61	16.54	16.11	1 5. 75	

7112.42 — — 14.84 16.78 15.75 14.52 14.80 7112.48 (16.86 13.12 14.69 (16.31 15.69 14.57 14.86 71197.24 15.67 — 14.67 (17.80 16.47 14.49 16.41 7198.24 15.69 — 14.72 (16.90 15.58 14.56 14.86 7199.24 15.67 — 14.67 (16.90 17.04 14.78 16.65 8582.35 — — 14.61 — (15.90 15.52 — 8582.39 — 14.61 16.62 17.44 15.10 (16.13 8582.29 — 14.67 16.70 (17.44 15.10 (16.13 8582.52 — — 14.53 — — 15.19 — 8584.40 — 12.74 14.67 — 15.10 (16.47 14.96 (16.13 8588.33 — 12.30 14.68 17.13 (16.47 14.96 (16.13 8589.31 — 12.51 14.80 16.90 (16.47 15.10 17.78 8589.31 — 12.55 14.61 (16.31 (16.47 15.10 17.78 8589.31 — 12.51 14.61 (16.31 (16.47 15.10 17.78 8589.35 — 12.51 14.61 (16.31 (16.47 15.10 17.78 8589.36 — 12.51 14.61 (16.31 (16.47 15.10 17.78 8589.36 — 12.51 14.61 (16.31 (16.47 15.10 17.78 8589.36 — 12.51 14.61 (16.31 (16.47 15.10 16.38 8592.35 — 12.51 14.61 (16.31 (16.47 15.10 17.78 8589.36 — 12.56 14.95 16.90 (16.47 15.14 (16.38 8592.35 — 12.51 14.61 (16.31 (16.47 15.15 14 (16.38 8592.35 — 12.51 14.61 (16.31 (16.47 15.15 14 (16.38 8592.35 — 12.51 14.61 (16.31 (16.47 15.15 14 (16.38 8592.35 — 12.51 14.84 17.24 (16.47 15.05 17.02 8825.61 — 14.95 — — — — — — — — — — — — — — — — — — —	Таблиц	a 50. M	осковские	наблюдени	я звезд со	звездия Ѕс	utum	
2832.25 — — 14.67 15.62 16.93 15.42 — 2832.25 — — 14.86 14.84 (16.47 15.32 — 2853.19 — — 14.86 14.10 (17.38 15.42 — 3488.43 — — 14.86 14.10 (17.38 15.10 — 3488.43 — — 14.87 (16.90 (16.47 — 5.00 — 3533.22 — — 14.80 (16.90 (16.47 15.00 — 3533.22 — — 14.80 (16.90 17.34 15.10 — 3533.21 — — (16.90 (16.47 15.19 — 17.106.46 — 14.84 16.79 16.47 14.68 14.70 17.12.42 — — 14.84 16.78 15.75 14.52 14.80 17.12.42 15.67 — 14.87 16.90 15.58 14.56 14.57 14.86 17.12.42 15.67 — 14.67 (17.80 16.47 14.49 16.41 17.98.24 15.67 — 14.67 (17.80 16.47 14.49 16.41 17.98.24 15.67 — 14.67 (17.80 16.47 14.49 16.41 17.98.24 15.67 — 14.67 (15.90 17.04 14.78 16.65 8582.35 — 14.61 — (15.90 15.52 — 8582.39 — 14.67 16.62 17.44 15.10 (16.13 15.69 14.57 14.86 15.85 14.56 14.57 14.86 15.85 14.56 14.57 14.86 15.85 15.75 15.52 15.52 14.67 16.62 17.44 15.10 (16.13 15.69 15.52 15.52 14.67 16.62 17.44 15.10 (16.13 16.47 14.96 16.53 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.52 15.90 15.50 17.75 15.90 15.50 17.75 15.90 15.50 17.75 15.90 15.50 17.75 15.90 15.10 17.75 15.90 15.10 17.75 15.90 15.50 17.75 15.90 15.10 17.75 15.90 15.90 15.10 17.75 15.90 15.90 15.10 17.75 15.90 15.90 15.10 17.75 15.90 15.90 15.10 17.75 15.90 15.90 15.10 17.75 15.90 15.90 15.10 15.90 15.10 15.90 15.10 16.55 15.90 15.10 15.90 15.10 15.10 15.90 15.10 15.90 15.10 15.90 15.10 15.10 15.90 15.10 15.10 15.90 15.10 15.10 15.10 15.10 15.90 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 1	JD	SZ	UY	BG	BQ	BR	FQ	
8977.44 — — 14.95 — — — — — — — — — — — — — — — — — — —	243 2826.22 2832.25 2853.19 3141.27 3488.43 3502.36 3533.22 3533.31 7106.46 7112.42 7112.48 7119.24 7199.24 8582.35 8582.39 8582.39 8582.39 8582.39 8582.39 8582.39 8582.39 8582.39 8582.31 8590.35 8591.40 8592.35 8591.40 8592.35 8591.40 8592.35 8591.40 8592.35 8591.40 8592.35 8592.44 8621.36 8842.54 8915.50 8936.46 8940.43 8942.46 8943.50 8944.39 8946.44 8964.30 8964.30 8964.30 8964.30 8964.30 8964.30 8964.30 8964.30 8965.35 8966.37	SZ	UY	14.67 14.86 14.86 14.84 14.75 14.84 14.89 14.87 14.67 14.67 14.67 14.67 14.67 14.67 14.67 14.67 14.67 14.61 14.95 14.84 14.67 14.67 14.61 14.95 14.95 14.95 14.95 14.81 14.61 14.85 14.86 14.89 14.86	15.62 14.84 14.10 (16.90 (16.90 (16.90) (16.90) (16.90) (16.90) (16.90) (16.90) (16.90) (16.90) (16.90) (16.90) (16.91) (16.31 17.13 16.90 (16.31 16.91 16.31 16.51 16.31 16.51 16.31 16.51 16.31 16.55 16.31 16.90 — 17.24 17.69 (16.90)	16.93 (16.47 (17.38 (16.47 (17.38 (16.47 17.34 (16.47 15.75 15.69 15.58 16.47 16.81 17.04 (15.90 17.44 (17.44 ———————————————————————————————————	FQ 15.42 15.32 15.42 15.10 15.00 15.10 15.19 14.68 14.52 14.57 14.56 14.49 14.78 15.52 15.14 15.10 15.05 15.14 15.10 15.05 15.14 15.10 15.05 15.14 15.10 15.05 15.10 15.05 15.10	14.79
9056.18 — 12.33 14.77 (16.90 14.97 14.78 14.76 9060.17 15.97 12.29 14.75 (16.90 15.25 14.78 14.71	8977.44 9053.18 9055.19 9056.18 9060.17	(15.97 (15.97 — 15.97	12.44 12.33 12.29	14.95 14.92 14.92 14.77 14.75	(16.90 (16.90 (16.90	15.13 14.97 15.25	15.05 14.78 14.78	14.49 14.71 14.76 14.71 14.66

JD	SZ	UY	BG	BQ	BR	FQ	ҚЗП 4417
243 9069.17		12.64					<u>' </u>
9069.17	_	12.54	_			_	
9290.47	16.24	12.52	14.75	14.61	(16.47	14.00	(10.10
9292.44	15.68	12.51	14.73	14.84	(17.27	14.89	(16.13
9294.46	15.80	12.52	14.75	15.22	(17.27)	14.78	16.52
9294.50	15.97	12.32	14.75	15.22	(17.27) (15.90)	14.67 14.78	16.52
9297.48	15.77	12.74	14.95	14.95	(17.27		16.47
9301.48	10.77	12.64	14.75	15.14	(17.27)	14.85 14.86	16.03
9302.44	15.28	12.52	14.02	15.14	(16.47	14.90	16.13 16.13
9302.47	10.20	12.51	14.84	15.27	17.44:	14.89	16.13
9318.41	15.30	12.56	14.68	16.31	15.64	14.78	15.39
9321.34	14.99	12.00	14.75	10.01	10.01	15.01:	15.39
9321.38	15.00	12.64	14.92	16.17	15.38	14.78	14.95
9323.45	15.28	12.71	14.90	16.08	15.11	14.69	15.04
9325.43	15.47	12.71	14.87	16.31	15.06	14.78	15.17
9325.47	15.47	12.71	14.86	16.62	14.69	14.78	15.41
9326.45	15.59	12.71	14.78	16.67	14.86	14.78	15.65
9326.49	15.85	12.86	14.90	16.62	14.75	14.78	15.41
9327.43	15.72	12.74	14.95	16.31	14.94	14.78	14.95
9327.47	15.77	12.93	14.78	(16.31	14.60	14.78	15.06
9328.45	15.72	12.72	14.87	16.67	14.42	14.56	15.04
9329.36	16.46	12.76	14.90	16.67	14.31	14.65	15.72
9329.40	15.65	12.72	14.90	16.70	14.75	14.87	15.17
9329.44	15.77	12.72	14.61	16.21	14.42	14.78	15.39
9330.36	15.97	12.43	14.61	16.57	14.62	14.78	14.86
9330.41	15.64	12.88	14.67	16.90	14.42	14.78	15.17
9334.45	15.80	12.71	14.72	16.76	14.52	14.78	15.17
9342.30	15.77	12.79	14.92	(16.31	14.29	14.78	15.03
9642.42	15.77	12.40	14.95	16.90	15.90	15.32	14.45
9647.44	16.37	12.40	14.99	16.44	15.38	15.10	14.83
9652.43	16.50	12.71	15.11	16.31	15.25	14.68	14.66
9653.45	(15.97	12.71 12.71	15.21	15.48	15.25	15.00	14.51
9667.38 9674.43	(15.97		14.99	15.10	15.25	15.10	14.76
9675.45	(15.97	12.74 12.77	15.10 15.18	15.48 15.51	15.09 15.25	15.00	14.68
9676.38	_	12.77	14.80	15.51 15.44	15.25	15.00 15.00	14.89 14.79
9677.44	_	12.44	14.86	15.44	15.52	14.61	14.79
9678.42	16.95	12.77	14.74	15.38	15.14	14.62	14.80
9687.41		12.44	14.99	15.88	15.63	14.55	14.79
9700.35	_	12.37		16.57	15.90	14.00	15.84
9702.37		12.37	15.05	(16.31	15.79	15.00	15.40
244		12.0.	10.00	(10.01	10	10.00	10.10
0033.40		13.17	14.86	15.15	16.15	14.49	15.03
0034.40		13.15	14.96	14.84	16.36	14.62	15.17
0036.36	_	13.15	14.86	15.18	16.36	14.78	15.58
0037.39	_	13.17	14.95	15.04	16.19	14.78	15.81
0056.43		12.86	14.78	15.73	16.47	14.78	15.92
0060.46		12.64	14.72	16.51	16.93	14.78	16.03
0062.49		12.77	14.57	16.70	16.70	14.78	16.58
0064.48	_	12.79	14.72	16.78	(16.47	14.89	15.92
0065.44		12.73	14.80	16.67	(16.47	14.78	15.92
0096.33		12.74	14.84	(16.90	17.44	14.78	16.78
0097.33		12.46	14.95	(16.90	(16.47	14.56	16.35

JD	SZ	UY	BG	BQ	BR	FQ	ҚЗП 4417
244				<u> </u>	. <u>,</u>		
0098.32	_	12.79	14.90	(16.90	(16.47	14.78	(16.13
0386.44	(16.86	12.24	15.08	(16.90	(16.47	14.52	15.78
0386.46		12.17	15.2 4 15.13	(16.90 (16.90	(16.47	14.46 14.25	15.70 15.94
0387.40		12.17 12.25	15.13	(16.90	(16. 4 7 (16.47	14.25	15.81
0387.43 0390.44	_	12.23	15.11	16.83	(16.47	14.45	15.84
0392.48		12.17	15.00	16.90	(16.47	14.25	15.96
0393.44	(16.86	12.17	14.77	16.65	(16.47	14.52	15.96
0412.45	(16.86	12.30	14.80	15.14	(16.47	14.52	16.28
0420.49	(16.86	12.17	14.51	15.33	(16.47	14.65	16.33
0425.40	`		14.41	15.98	(16.47	15.02	-
0427.40	(16.86	12.82	14.51	15.73	(16.47	14.60	16.13
0444.30	(16.86	12.56	14.92	(16.31	(16.47	14.78	16.13:
0506.22	16.86	12.80	14.68	(16.90	(16.47	14.25	16.13
0744.36			14.74	15.43	<u> </u>	14.96	10.00
0744.40	16.17		14.67	15.46	(16.47	14.70	16.30
0782.44	16.48 16.07	11.59 11.41	14.90 14.85	14.70 14.56	(16.47 (16.47	14.78 14.57	16.40 16.34
0782.48 0793.37	16.07	11.41	14.61	14.33	(16.47	14.60	16.30
0794.40	16.07	11.71	14.71	14.63	(16.47	14.63	16.03
0797.37	15.77	11.66	14.71	14.84	(16.47	14.52	16.08
0797.41	15.47	11.71	14.74	14.63	(16.47	14.60	16.18
0798.45	15.47	11.75	14.84	14.84	(16.47	14.60	16.08
0799.34	15.36	11.70	14.76	14.84	(16.47	14.52	16.18
.38	15.36	11.66	14.76	14.84	(16.47	14.54	16.68
0800.44	15.46	11.58	14.71	14.84	(16.47	14.57	16.00
0802.43	15.37	11.44	14.61	14.93	(16.47	14.60	16.66 16.60
0803.35	15.29	11.06 11.06	14.77 14.77	15.02 14.98	(16.47 (16.47	14.60 14.92	16.60
.38 0808.36	15.47 15.29	11.16	14.77	15.24	(16.47	14.60	16.76
.39	15.21	11.26	14.77	15.20	(16.47	14.78	16.76
0824.31	10.21		14.77	-		14.55	-
0828.28	15.37	11.38	14.79	17.00	(16.47	14.65	16.65
.31	15.37	11.50	14.71	17.00	(16.47	14.69	16.70
0829.35	15.29	11.50	14.67	16.90	(16.47	14.78	(16.13
0833.27	15.37	11.47	-	16.90	(16.47		16.43:
.32		11.53	14.00	16.90	(16.47	14.78	16.43
0838.29	15.59	11.55 11.59	14.82 14.72	(16.90 (16.90	(16.47 (16.47	15.14	(16.13
.34 1129.45	15.27 15.77	11.39	14.72	16.55	(16.47	15.25	16.43
1130.45	16.75	11.34	14.95	16.08	(16.47	15.25	16.46
.48	16.66	11.25	14.95	16.31	(16.47	15.25	16.46
1131.43	16.66	10.96	14.90	16.12	(16.47	15.24	16.35
.47	16.66	11.06	14.90	16.16	(16.47	15.32	16.35
1132.46	16.66	11.06	14.92	16.31	(16.47	15.32	16.46
1133.41	16.56	11.06	14.92	16.31	(16.47	15.32	16.78
1159.39	16.86	11.34	14.90	14.26	(16.47	15.14	16.85
.43	16.96	11.34	14.92	14.26	(16.47	15.19	16.85 16.67
1160.37	17.06	11.46	14.95	14.50 14.20	(16.47 (16.47	15.17 15.17	16.46
.40 1161.38		11.55 11.53	14.98 14.90	14.20	(16.47	15.17	16.48
1162.40		11.33	14.87	14.20	(16.47	15.12	16.88
.43		11.44	14.87	14.33	(16.47	15.19	16.78
1163.38		11.36	14.85	14.26	(16.47	15.17	16.78

JD	SZ	UY	BG	BQ	BR	FQ	КЗП 4417
244							
1176.38	. 	11.71	14.95	15.88	(16.47	14.91	
1177.34	(16.86	11.53 11.56	14.87	15.51	(16.47	15.10	16.78
.38	-	11.56	14.95	15.73:	(16.47	15.05	(16.13
1180.30 .33	(17.46	11.56 11.50	14.85 14.80	15.53 15.40	(16.47 (16.47	15.09 15.09	16.46 16.85
.33 1181.38	(17.40	11.97	14.88	15.40	(16.47	15.12	10.65
1182.39	(16.86	11.87	14.90	15.55	(16.47	15.09	16.85
1183.36	(16.86	11.90	14.88	15.73	(16.47	15.09	16.78
.39	17.26	11.90	14.90	15.53	(16.47	15.14	16.95
1184.34	(16.86	11.83	14.87	15.73	(16.47	15.17	16.90
.38	(16.86	11.83	14.88	15.73	(16.47	15.12	16.78
1185.34	17.36	11.80	14.85	16.16	(16.47	15.09	16.90
.37	(16.86	11.92	14.95	16.02	(16.47	15.09	16.90
1187.35	(16.86	12.03	14.95	15.96	(16.47	15.09	16.78
.38	(16.86	11.90	14.92	15.73:	(16.47	14.96	
1188.34	(16.86	11.90	14.90	15.73	(16.47	15.05	(16.5)
.38	(16.86	11.97	14.88	15.73	(16.47	15.09	(16.5
1236.23	(16.86	12.58	14.61	(16.90	14.63	14.96	(16.5
1237.20	(16.86	13.14	14.71	(16.90	14.42	15.09	(16.5
1238.22	(16.86	13.26	14.84	(16.90	14.88	15.15	(16.5
1239.22	(16.86	13.14	14.77	(16.90	14.70 14.79	15.05	(16.5 (16.5
1240.21 1241.21	(16.86	12.96 13.08	14.76 14.90	(16.90 (16.90	14.79	15.09 15.11	(16.5)
1241.21	(16.86 (16.86	13.08	14.90	(16.90	14.88	15.03	(16.5
1246.22	(16.86	13.06	14.84	(16.90	14.88	15.11	(16.5
1477.414	(16.86	13.01	14.92	(16.90	(17.44	15.12	16.61
.452	17.15	13.01	14.92	(16.90	17.44:	15.14	16.55
1479.452	(16.86	13.01	14.83	(16.90	16.71:	14.78	16.92
.482	(16.86	12.98	14.95	(16.90	(17.00	15.0 5	16.70
1483.459	ì7.15:	12.98	14.86	(16.90	17.19	15.00	17.13
1484.447		12.91	-	(16.90)	17.44:	-	17.30
.482	(16.86	12.98	14.90	(16.90)	17.19:	15.09	17.22
1485.460	17.25	12.91	14.75	(16.90	17.44:	15.00	17.38
1501.374	(16.86	10.07	14.78	(16.90	16.47:	15.19	17.22
1508.397	(16.86	12.07	14.85	16.84	17.44:	15.05 15.14	17.22
.439 1512.451	(16.86	$12.07 \\ 12.01$	14.78 14.61	16.83 16.60	17.44: 17.44:	15.14	17.22
.483	(16.88 (16.86	11.95	14.61	16.24	17.44:	15.14	17.30
1514.352	(10.80	11.97	14.01	15.92	17.36:		17.38
.388	(16.86	11.92	14.77	16.02	(16.47	15.19	17.22
1515.438	(16.86	11.92	14.77	15.73	16.55:	15.67	17.22
.471	(16.86	11.92	14.61	15.65	16.47:	15.09	17.22
1517.438	(16.86	11.87	14.72	15.57	16.72:	15.10	17.22
.470		11.91	14.66	15.51	17.44:	15.14	17.22
1519.453	(16.86	11.90	14.75	15.33	17.44:	15.17	17.07
.485		11.90	14.76	15.31	17.44:	15.24	17.22
1520.483		11.90	14.76	15.28	16.65:	15.14	17.40
.517		11.94:	14.61	15.33	(16.47	15.24	(16.62
1565.248	(16.86	11.76	14.90	17.06	14.67	15.09	15.13
1566.244		11.90 11.84	14.95	16.90	14.42	14.78	15.04 14.90
1567.243	(16.86	11.84 11.85	14.90		14.42 14.63	14.78 14.78	14.90
1568.236			14.86 14.89	16.90:	14.63	14.70	14.59
1569.240	(16.86	11.80	14.09	10.90:	14.04	14.70	14.03

JD hel	sz	UY	BG	BQ	BR	FQ	КЗП 4417
244 1570.241 1571.253 1573.250	(16.86 (16.86 (16.86	11.72 11.72 11.82	14.92 14.87 14.76	16.98 17.14 17.06	14.86 14.84 14.72	15.10 15.05 14.70	14.59 14.40 14.17
Таолиц	a 51. Mo	сковские н	аолюдения	звезд соз	вездия Ѕсі	ıtum	
JD hel	AZ	ВМ	CE	JD hel	AZ	вм	CE
243 2826.22 2832.25 2853.187 3141.275 3488.43 3502.36 3533.312 7106.461 7112.425 7113.437 7118.490 7197.246 7198.243 7199.237 8582.395 496 522 8587.393 8588.335 8589.318 8590.355 8591.402 8592.355 441 8621.361 8936.467 8940.437 8942.466 8943.510 8944.399 8946.451 8947.444 8964.303 8965.355	17.32 — 16.94 17.23 16.77: — 16.96 16.97 — 16.15 — 16.33 16.59 16.82 16.21 16.21 15.93 16.59 16.82 15.71 15.79 17.05 16.48 16.48	15.94 16.08 15.98 15.87 15.98 15.87 15.89 15.94 15.94 15.98 15.94 15.94 15.94 15.94 15.94 15.94 15.94 15.94 15.95 15.96 15.97 15.98	15.77 16.20 14.32 (16.02 (17.20 (17.67 17.52: 16.40 16.27: 16.34: 16.55 (17.00 (16.65 (16.80 15.04 15.11 14.88 15.67 14.88 15.67 14.88 15.51 15.45 16.40 16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.02	243 9062.188 9290.476 9292.444 9294.469 9296.35 9297.491 9301.488 9302.441 .472 9318.414 9321.350 .387 9323.454 9325.438 .477 9326.453 .493 9327.433 .475 9328.459 9329.365 .409 .447 9330.369 .414 9334.458 9342.302 9642.428 9647.449 9652.436 9653.452 9674.434 9675.461	17.32 17.13 17.05: 17.05: 16.87 17.32 (17.05 (17.13 16.97 17.13 16.97 (17.23 17.05 17.05 17.14 17.23 17.05 17.14 17.23 (16.59: 16.59: (16.59) (16.59)	15.94 15.94 15.94 15.94 16.11 15.98 15.94 15.94 15.96 15.98 15.89: 16.11 15.81 15.91 15.90 15.90 15.90 15.94 16.07 16.03 15.94 16.07 16.03 15.94	(16.02 (16.65 16.20: (16.65 16.20: (16.02 16.65 16.73 (16.65 16.73 (16.65 (16.65 (16.65 16.73 16.67 16.67 16.67 16.67 16.67 16.65 (16.02 (16.65 (16.02 (16.0
8966.375 8968.299 8972.303 9053.182 9055.185 9056.184 9060.171	16.12 (17.05 17.05 15.74 15.74 ————————————————————————————————————	15.93 15.75: 15.77 — 15.93 (16.03 (16.03	15.07 16.12 15.26 (16.02 (16.02 (16.02 (16.02	9677.450 9678.426 9687.418 9700.351 9702.366 244 0033.403	16.94 16.19 — — 16.40	16.11 15.91 — 15.84 15.81	(16.46 (16.65 16.42: (16.02

JD hel	AZ	ВМ	CE	JD hel	AZ	вм	CE
244				244			
0034.410		15.86	(16.02	1159.394	16.74	15.94	(16.65
0036.371		15.86	(16.02	.427	16.90	15.90	16.97:
0037.392	16.20	15.82	(16.02	1160.371	15.93	15.98	(16.65
0056.434	16.40	16.10	16.40	.402	17.05	16.03	(16.65
0060.468	16.74	16.00	16.65	1161.375	16.50	16.03	(16.02)
0062.499	16.87	16.03	(16.02	1162.398	16.33	15.90	16.73
0064.484	(17.05	16.10	16.38	.430		15.89	(16.65
0065.447	16.59	16.14	15.87	1163.377	16.31	15.92	(16.65
0096.332	16.15	15.98	15.68	1176.375	_		(16.03
0097.332	16.59	16.14	15.72	1177.343	16.40	15.84	(16.65
0098.328	16.70	15.98	15.26	.377	16.46	15.84	(16.02
0386.442	16.87	16.03	(16.65	1180.301	16.09	15.77	(16.65
.465		15.94	(16.65	.334	16.92	15.87	(16.65
0387.408	(17.05	16.03	(16.65	1181.376		16.03	(16.02
.431	16.94	15.98	(16.26	1182.387	16.77	15.89	(16.32
0390.441	16.96:	16.03	(16.26	1183.356	16.82	15.91	(16.65
0392.481	17.14	15.94	(17.67	.390	16.94	15.86	(16.65
0393.441	16.90	15.98	(16.65	1184.344	16.48	15.89	16.83
0412.452	_	16.03	(16.02	.377	16.48	15.84	16.57
0420.497		16.03	(16.02	1185.339	16.40	15.79	16.91
0425.409			(16.02	.372	16.87	15.93	17.13
0425.407	-		(15.26	1187.347	16.86	15.81	
0444.299		_	(16.02	.379	(16.59	15.87	(16.02
0506.217	(16.59	16.03	15.64	1188.345	16.48	15.87	(16.38
0782.442	17.05	16.03	(17.67	.377			(16.32
.475	(17.04	16.03	(16.65	1236.231	16.68	15.81	`16.56
0793.368	(17.04	15.97	(16.02	1237.205	16.12	15.90	15.91
0794.404	(16.59	16.03	(16.02	1238.217	16.59	15.98	15.91
0797.369	(16.59	16.03	16.77	1239.217	16.82	15.92	15.82
.407	16.59:	16.01	(16.65	1240.209	16.43	15.89	15.77
0798.452	10.00.	10.01	(16.02	1241.208	16.59	15.94	15.92
0799.342	17.05	15.87	(16.65	1245.244	16.26	15.90	15.59
.378	16.94	15.89	(16.65	1246.217	16.33	15.94	15.92
0800.442	(17.05		(16.02	1477.414	17.05	15.90	(16.62)
0802.426		15.89	(16.32	.452	(16.95	16.16	(16.62
0803.352		15.93:	(16.65	1479.452	`17.05	15.70:	(16.65
.384		16.07	16.65	.482	17.05	15.87	(16.26)
0808.359		15.94	16.65:	1483.459	17.14	15.89	(16.65
.394		16.14	16.65	1484.482	16.97	15.90	(17.01
0828.278		16.03	16.65	1485.460	16.96	15.86	(16.65
.313		16.14	16.02:	1501.374	_	15.90	(16.02
0829.350		16.03	16.65	1508.397	(17.05	15.71	(16.65
0833.267		_	16.02	.439	`17.05	15.60	(16.65
.321		_	16.40	1512.451	17.14	15.75	(16.65
0838.291		16.03	(16.02	.483	16.50	15.70	(16.65
.335		15.98	(-5.52	1514.352			(16.65
1129.453			16.65	.388		15.51	(16.02
1130.449			(16.40	1515.438		15.63	(16.02
.484			16.65	.471		15.65	(16.65
1131.433			(16.65	1517.438		15.56	(17.13
.474			(16.65	.470		15.47	(16.65
.4/	10.70		(10.00			15.47	(17.05
1132.45	5 16.59	16.07	(16.83	1519.453	10.50	10.47	16.83

Продолжение табл. 51

JD hel	AZ	вм	CE	JD hel	AZ	вм	CE
244 1520.483 .517 1565.248 1566.244 1567.243	15.72 16.29 17.05 17.05 16.59	15.42 15.65 15.94 16.03 16.03:	(16.65 (16.02 16.73 (16.65	244 1568.236 1569.240 1570.241 1571.253 1573.250	17.05 17.05 16.82	15.98 16.03 15.94 15.98 15.79	(16.02 (16.02 (16.02 16.89 (16.02

Глава III. ИССЛЕДОВАНИЕ ПЕРЕМЕННЫХ ЗВЕЗД СОЗВЕЗДИЯ ЧАСОВ

Во время работы над Атласом поисковых карт переменных звезд автор знакомился с оригиналами журналов открытий, которые хранятся в Гарвардской обсерватории и случайно встретил записи открытия 13 переменных звезд, которые не были опубликованы. Судя по почерку, эти звезды были открыты Э. Юз (Е. Hughes).

Исследование всех имеющихся в Гарвардской обсерватории снимков этой области неба подтвердило переменность некоторых из них

Таблица 52. Сведения о новых переменных звездах

		- HODER II		к овездал
№ п/п	α ₍₁₈₇₅₎ δ	Тип	М	m
2	3h18m4-48° 29'	RR	12.9	14.3
3	14.3—50 03	RR	12.1	12.9
4* 5	48.6-49 27		10.9	11.8
	27.0 - 4550	RR	14.2	15.1
6	41.5—47 47	SR	12.7	13.6
8	КЗП 379	M	13.0	15.8
9	29.8—47 45	SR	13.6	15.0
10	28.2—52 44	5	13.9	14.6
11	23.2—52 21	WUMa	14.0	14.4
13	20.1—49 22	RR	12.7	13.4

^{*} Звезда № 4 равна CoD - 49* 1118.

Таблица 53. Сведения о звездах сравнения (блеск выражен в степенях)

						(47.1	on one	anien B erenenzaj
Звезда	a	ь	с	d	e	f	g	Уравнение
TTHor	0.0	7.2	12.4	22.4			_	
(ЗП 357	0.0	4.1	13.2				-	
2	0.0	11.5	17.5		-	-		m = 12.9 + 0.096 s
3	0.0	8.0	16.6					m = 12.0 + 0.062 s
4 5	0.0	9.4	13.8	24.6				m = 10.5 + 0.068 s
	0.0	11.0						m = 14.5 + 0.073 s
6	0.0	7.1	8.8	19.3	-	-		m = 12.2 + 0.078 s
8	0.0	11.4	17.4	21.8	29.5	37.1	41.5	m = 12.3 + 0.084 s
9	0.0	4.0	12.8	21.0	25.0	<u> </u>		m = 13.4 + 0.078 s
10	0.0	7.4	15.4					m = 13.5 + 0.078 s
11	0.0	5.9	9.7	20.7	_	_	-	m = 13.3 + 0.082 s
13	0.0	8.4	17.9	24.9				m = 12.2 + 0.078 s

и дало возможность получить элементы. Одна из этих звезд КЗП 379 была независимо открыта Хофмейстером. Кроме того, был оценен блеск еще двух звезд — ТТ Часов и КЗП 357.

Три звезды оказались затменными, пять — типа RR Лиры, одна мирида и две полуправильные. У одной звезды (№ 4) элементы най-

ти не удалось.

Приближенные координаты новых переменных звезд приведены в табл. 52, а степенные шкалы блеска звезд сравнения и приближенные формулы для превращения степенных шкал в звездные величины — в табл. 53.

затменные звезды

ТТ Часов (Horologii)

По исходной формуле Штромайера [25]

$$Min JD = 2428761.550 + 2.608107 \cdot E$$

построены сезонные средние кривые блеска, из которых получены следующие моменты минимумов:

Min hel JD	E	O A	O B
2416461.618	-4716	 0.099	-0.034
8271.694	4022	.049	+ .011
24562.485	← 1610	.013	+ .034
7426.181	— 512	.018	+ .023
30921.023	- +- 828	.040	.006
2230,272	+1330	.060	— .029

Остатки О — А вычислены относительно формулы Штромайера. Их ход с номером эпохи E показывает, что период переменен. Остатки О — В вычислены по формуле, найденной автором:

Min hel JD =
$$2428761.512 + 2.6081127 \cdot E$$
.

Средняя кривая блеска приведена в табл. 54 и на рис. 35, а наблюдения — в табл. 55—59.

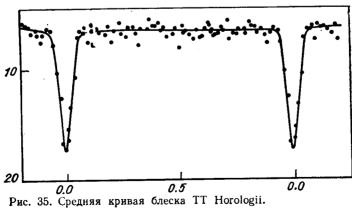


Таблица 54. Средняя кривая блеска ТТ Horologii

Фаза		n	Фаза	s	n	Фаза	s	п
0 ^p .002	16.4	10	0 ^p .357	6.4	10	0 ^p .672	6.8	10
.008	15.2	10	.367	5.5	10	.684	6.2	iĭ
.019	13.3	10	.382	6.1	10	.697	6.6	îî
.035	10.6	11	.393	6.1	10	.708	5.8	10
.051	7.2	10	.404	5.9	10	.719	7.2	10
.060	6.5	10	.419	6.6	10	.735	6.8	10
.072	6.6	11	.427	6.3	10	.748	6.8	10
.088	6.2	10	.451	7.3	11	.761	6.4	10
.099	7.5	10	.472	7.0	10	.776	6.6	10
.109	6.1	10	.488	6.4	11	.790	6.8	10
.122	6.4	11	.500	8.2	10	.808	5.9	10
.137	6.3	11	.507	6.2	10	.821	6.1	10
.151	6.6	10	.515	6.8	10	.832	6.2	11
.170	7.0	10	.528	6.5	10	.846	6.8	10
.184	6.1	10	.543	6.9	10	.865	6.5	12
.199	7. 6	10	.558	7.3	10	.878	7.0	10
.213	6.6	10	.575	6.6	11	.890	7.6	10
.235	5.8	11	.592	7.2	11	.899	6.8	10
.250	6.8	11	.601	7.1	10	.919	6.4	11
.263	7.1	10	.612	6.3	10	.932	6.6	11
.280	6.2	11	.624	5.8	10	.952	7.8	11
.298	6.2	10	.634	6.1	11	.963	10.3	7
.310	6.8	10	.644	6.6	11	.976	12.7	7 5 5
.324	7.9	10	.655	7.0	11	.98 9	16.6	5
.336	6.3	11	.665	6.9	10	.996	17.1	5

Таблица 55. Гарвардские наблюдения звезд созвездия Horologium (серия МF)

JD hel	TT	№ 2	№ 3	№ 4	№ 5	№ 6	№ 8	№ 9	№ 10	№ 11	№ 13
242											
6303.488	4.2	15.9	4.8	19.7	-1.5	15.2	10.4	14.6	12.2	9.7	10.5
6330.363	4.2	10.4	14.9	16.7	4.0	16.0	20.5		9.9	7.7	4.8
6561.603	10.7	11.5	8.9	20.3	2.0	17.7	11.4	9.6	11.4	9.7	10.3
6566.613	5.7	13.5	15.7	15.0	-4.0	17.3	9.4	2.5	12.7	9.7	14.1
6571.583	5.7	12.2	13.7	20.0	6.4	16.0	14.7	4.9	6.2	7.5	12.6
6576.610	5.7	9.0	13.2	16.2	5.5	18.1	12.2	10.2	7.4	9.7	22.6
6626.557	5.7	8.4	3.2	10.8	2.0	9.1	27.2	9.3	12.7	16.3	13.7
6659.349	14.0	1.6	6.2	19.7	7.3	13.7	32.5	17.3	11.8	15.7	14.2
6675.363	5.7	8.0	16.6	16.2	6.6	16.3	37.5	18.5	4.5	11.9	9.5
6678.441	5.7	19.5	17.6	17.4	0.0	17.3	36.5	22.0	9.0	8.6	15.0
6679.262	5.7	8.9	17.6	17.0	4.0	16.3	(37.5)	20.1	12.2	12.5	11.2
.327	5.7	10.0	0.0	12.8	5.0	14.9	37.1	21.0	12.5	14.8	8.4
.392	5.7	14.8	5.7	13.8	6.4	13.2	(35.5)	20.0	6.6	13.9	8.4
.458	4.2	12.2	9.6	12.8	7.0	15.7	(37.1	20.2	6.5	8.7	8.4
.523	5.7	11.5	12.3	12.8	8.3	16.0	40.1	22.0	9.8	7.8	10.9
6680.411	5.7	8.6		13.8	1.1	17.1	(37.1)	21.0	6.5	16.7	14.1
6687.397	4.2	14.8	13.5	9.8	7.0	14.6	(37.1)	20.2	12.1	8.0	10.5
6688.444			\leftarrow	16.2	-	17.3	42.9				
6710.345	4.2	9.0	5.6	11.8	0.0	14.2	37.1	20.2	11.8	15.2	13.6

JD hel	TT	№ 2	№ 3	№ 4	№ 5	№ 6	№ 8	№ 9	№ 10	№ 11	№ 13
242 6763.253 6918.602 6927.576 6931.592 6950.545 6971.451 7033.306 7036.260 7039.293 .358 .423 .489 .553 7040.293 .358 .422 .489 .553 7041.295 7044.305 .501 7046.502 7065.307 .372 .436 .503 7070.455	4.2 4.2 4.2 5.0 15.7 5.7 4.2 9.4 9.8 5.7 5.7 ———————————————————————————————	12.5 14.8 0.0 3.5 8.4	14.7 4.8 4.4 6.2 11.8 4.4 11.4 12.3 14.5 15.1 11.8	12.8 16.0 19.7 14.8 10.8 12.8 11.8 11.8 11.8 12.8 13.8 15.1 11.8 12.8 12.8 12.8 12.8 12.8 12.8 12	7.3 6.0	17.3 16.5 14.9 16.3 13.7 14.6 13.7 13.2 12.2 10.5 11.5 11.9 9.5 11.5 6.1 11.2 12.7 13.2 14.2 14.5 16.0 15.0	18.3 29.5 33.8 34.8 37.1 (29.5 27.3 27.3 27.3 25.6 26.2 25.1 25.1 25.1 22.8 24.4 21.8 21.8 16.4 17.4 15.7	8.8 15.5 12.8 13.7 2.3 9.0 21.0 21.0 21.0 22.0 20.1 21.0 22.0 21.0 22.0 22	7.4 6.5 10.6 11.8 11.4 11.4 7.4 6.4 9.7 12.2 12.2 8.5 4.4 8.5 10.1 13.4 11.0 7.4 6.1 8.7 11.6 8.7 11.6 8.7	8.3 8.7 7.4 14.1 8.7 9.7 10.7 13.4 10.9 8.3 9.7 12.7 10.8 9.7 15.8 11.7 15.7 7.9 12.7 7.5 10.7	15.0 13.2 8.4 7.3 18.9 10.5 15.4 6.1 17.9 16.0 15.8 10.1 5.4 9.5 11.9 13.6 14.1 15.8 17.9 9.8 14.4 16.0 13.2 6.5 7.2 7.6 19.3
8075.425 8429.442 243 0045.263 .329 0073.240 0171.641 0176.617 0196.637 0198.614 0201.570 .635 0203.604 0205.572 0206.570 0404.265 .334 0547.644 0561.612 0563.564	7.2 13.6 4.2 5.7 7.2 5.7 6 5.7 6 5.7 6 5.7 7.2 1 7.2 1 5.7 2 7.2 4 5.7 2 7.2 4 8.9	15.5 13.5 8.4 9.0 14.6 12.4 5.8 8.8 15.5 10.4 5.4 11.6 6.4 0.1 14.6 8.8 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6	11.4 10.6 12.8 14.1 14.8 16.1 16.8 16.8	12.8 11.8 10.8 8.3 14.9 13.8 15.1 13.8 10.8 10.8 13.8 13.8 14.9 14.9 14.9 14.9 14.9 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8	-1. 0.0 1.1 9.0 2.0 2.4 9.0 8.3 8.0	10.1 18.4 15.2 12.7 17.1 10.5 10.5 12.2 10.1 10.9 10.1 10.9 10.1 10.9 10.9 10.9	38.6 20.5 19.3 26.9 35.4 30.3 30.5 20.3 23.9 20.7 17.4 19.6 18.9 17.4 (29.5 32.5 8.5 7.6 10.8	9.5 (10.0 9.9 8.4 1.6 14.6 14.6 10.3 10.6 12.8 9.3 12.8 11.0 11.3 13.8 10.3 22.0 20.0 16.4 10.3	5.6 10.1 8.5 7.4 11.0 10.1 5.7 12.4 9.2 8.3 11.0 6.3 8.7 7.4 5.7 6.3 12.0 12.7 12.4 9.4 4.9	12.7 10.7 10.9 12.7 14.1 11.3 11.7 (9.7) 8.7 9.7 6.5 11.7 7.5 9.7 13.4 10.8 6.9 9.7 (6.9)	13.7 6.4 13.2 15.0 14.4 10.1 16.0 8.4 10.5 10.5 6.5 11.2 14.2 15.1 15.5 7.5 14.1 4.3 6.3 9.5

JD hel	TT	№ 2	№ 3	№ 4	№ 5	№ 6	№8	№ 9	№ 10	№ 11	№ 13
JD Her		145 2	145 0	1/2-1	145.0	143.0	145 0	1123	145 10	145 11	145 12
243											
0585.613	5.7	5.2	14.7	9.2	2.7	12.7	10.2	9.3	9.4	15.7	12.6
0588.540	5.7	10.0	9.9	9.2	9.2	13.8	11.4	7.5	8.4	8.7	13.7
.605	5.7	11.5	12.9	9.2	8.3	13.5	10.4	4.0	12.0	7.5	6.5
0589.540	5.7	6.2	15.5	9.2	6.0		12.6	6.5	11.8	14.7	13.7
.606	5.7	6.2	15.4	10.8	4.0		11.4	9.3	12.0	9.7	16.7
0590.608	-	3.1	12.7	9.2	-1.5		12.6	6.9	9.4	11.7	8.4
0591.479		14.9	15.5	7.7	8.6	11.8	14.8	8.9	5.4	7.3	9.6
.544	_	11.5	15.5	10.4	6.0		13.4	9.6	10.1	9.7	13.6
.609	_	15.1	9.9	10.4	8.0	11.2	13.4	9.9	12.0	12.7	12.0
0592.516	_	14.5	13.2	10.8	7.7	13.8	15.1	9.6	5.4	8.0	15.3
.597		14.5	14.2	9.2	-5.0	13.8	15.0	10.2	12.4	8.4	6.3
0593.600		10.0	3.6	8.6	8.0	13.8	18.3	8.4	11.4	8.2	13.6
0605.580	_	11.2	15.9	10.8	3.0		22.9	10.4	7.4	16.1	15.1
0606.585	-	11.0	12.3	15.1	7.0	11.8	24.7	8.6	8.5	12.7	6.3
0618.426		9.4	13.4	8.6	8.0	13.2	29.5	9.9	9.2	9.7	4.7
.492	-	11.5	14.2	9.2	8.3		27.6	9.9	8.5	8.4	6.0
.559		12.7	15.2	10.4	3.0		27.3	7.9	8.5	8.1	8.4
.625		10.4	12.9	11.4	-4.5		26.4	10.2	7.4	.8.1	8.4
0619.434	_	3.1	9.9	9.2	3.0		26.2	9.3	10.6	13.4	12.6
.502	—	5.2	10.9	10.4	6.0		26.5	10.2	5.5	14.3	14.1
.567	_	7.3	13.8	9.2	8.0		26.6	10.2	6.4	8.2	13.7
.632		13.5	13.4	14.9		11.4	26.1	10.8	11.0	8.2	13.7
0620.459		8.6	13.7	10.8	7.6		26.4	10.8	12.4	15.4	4.7
.527	_	-1.0		10.8	-3.0		27.6	9.6	4.2	(9.7)	8.4
.594	_	3.4	5.0	7.7	-1.0		26.1	9.9	9.8	10.8	9.6
0623.592	_	11.5	15.3	9.7	8.3		28.4	10.5	5.3	8.1	14.1 13.2
0624.620 0638.346		9.9 14.7	11.2 14.5	$9.2 \\ 9.2$	2.4		$26.6 \\ 24.4$	$\begin{array}{c} 8.9 \\ 12.8 \end{array}$	5.8	8.1 15.7	5.9
.442		14.7	14.7	6.9	6.6 8.0		30.5	11.4	9.4 5.5	8.4	10.1
0639.368	_	11.0	9.9	7.7	-2.0		31.5	10.8	12.2	14.3	14.0
.436	_	13.9	13.7	7.7	-1.5		29.5	10.8	7.4	14.8	13.6
.504		11.0	14.5	7.7	0.0		30.6	10.2	5.3	9.7	14.7
.573		11.5	15.4	7.7		3 11.4	31.4	10.8	9.2	7.2	9.5
0640.368		6.7	14.5	4.6	4.0		33.5	11.4	12.2	9.7	9.4
0642.285		14.1	(7.0			16.5	37.1	17.7	4.3	9.7	11.2
0677.263		14.9	-1.0			16.3	40.1:	18.5	12.5	9.7	14.1
0912.646		11.0	15.0	17.0	_	- 12.2	28.5	21.0	6.5	9.7	10.5
0913.645	-	7.7	10.9	15.1	2.0	10.9	27.8	20.0	11.8	8.4	17.9
0918.659		-2.5	2.9	15.8	6.8	3 10.5	28.5	20.0	11.8	9.7	14.7
0920.626		11.5	4.6	13.8			28.5	20.1	13.0	15. 7	13.6
0933.592	-	11.5	11.7	13.8			34.9	12.8	9.4	11.7	4.8
0935.639		2.0	14.2				34.1	9.9	9.7	5.9	4.2
0943.565		0.0	13.4				35.5	11.2	6.5	6.8	6.0
.649		8.6	16.6		8.0		35.4	10.8	12.7	9.7	7.2
0948.580		-2.5	13.4				36.3	12.8	7.4	8.8	12.5
0960.574		8.6	4.4				38.6	14.0	12.4	9.7	14.7
0961.578		0.0	13.4				39.3	12.8	10.4	12.4	12.0
0962.577	_	15.5	12.9				39.1	14.6	11.4	13.7	13.2
0963.577	-	12.5	17.6				40.0	13.8	11.8	9.7	13.2
0964.490	_	3.5	12.8				40.0 43.5	14.6	5.7	4.9	17.4 16.7
.578 0970.596	_	-2.0	14.5	16.2	8.0 9.0		43.5	16.9 17.4	9.0	7.4 5.9	14.7
0970.596	_	-2.0	14.7	15.1	8.0		43.5	16.7	6.8 6.3	5.9 16.7	12.6
0011.010		11.0	14.1	10.1	0.0	, 0.0	7U.U	10.7	0.3	10.7	12.0

Прообияс	1	1	1		1		1		1	,	
JD hel	TT	№ 2	№ 3	№ 4	№ 5	№ 6	№ 8	№ 9	№ 10	№ 11	№ 13
243		•		·	···		<u> </u>	·	· · · · · · · · ·	·	·
0990.419		1.2	13.5	15.0	5.5	10.8	40.0	14.6	5.9	13.7	13.7
.504		6.6	13.7	10.8	7.0	14.2	37.1	15.0	4.2	5.9	11.2
.593		13.1	15.5	12.0	8.3	13.8	_	12.8	9.7	8.1	3.4
0994.419	_	9.7	15.7	10.8	8.0	13.8	(34.5	14.8	12.2	9.7	14.1
.499	_	10.4	16.6	12.0	8.3	14.2	37.1	14.8	5.6	7.8	6.3
1019.435 1033.341	-	14.5	14.7	15.1	-3.0	14.2	33.8	15.5	12.7	8.4	13.2
.507	_	4.4 10.4	9.6 13.7	13.8 14.9	6.6	14.9	33.3	17.7	12.7	5.9	13.2
1045.353	_	11.0	13.7	16.2	8.0 5.5	$14.2 \\ 14.2$	$\frac{28.0}{29.5}$	17.4 16.3	6.5 7.4	$\frac{9.7}{12.7}$	12.0
1047.333	-	10.4	9.9	20.7	-1.5	13.8	29.5 26.9	15.1	6.2	8.4	$\frac{12.0}{12.8}$
1052.266		13.9	13.7	17.4	8.0	14.2	27.6	17.9	11.2	9.7	8.4
.527		-1.0	4.0	16.2	-2.0	14.2	27.0	16.9	7.4	8.4	13.7
1053.272	-	14.5	9.9	16.5	-2.0	13.8	26.2	17.9	12.4	8.8	13.7
.534		15.2	14.7	16.2	6.4	15.2	26.6	14.8	7.4	(9.7)	9.6
1054.546		10.4	9.0	17.4	-2.0	16.5	27.6	15.1	13.4	14.7	14.7
1061.286		15.5	14.7	18.6	6.3	14.0	22.8	17.9	11.4	11.7	13.2
.530		0.0	-1.5	19.5	9.0	13.8	24.0	16.9	4.2	8.4	8.4
1062.286		11.5	9.7	18.6	2 .5	14.2	20.8	14.4	7.4	8.8	8.4
.509		15.1	12.9	19.8	6.0	15.2	23.5	17.9	1.8	8.4	13.8
1074.286	_	11.5	17.6	16.2	7.7	14.2	19.9	18.3	7.4	7.8	13.7
1076.345	_	8.5	-1.0	15.1	8.0	15.6	20.7	20.0	4.9	12.5	12.6
1080.463	_	11.5	11.7		-2.0	14.3	17.4	17.7	4.4	10.8	12.9
1081.474		10.0	3.4	16.5	6.4	15.2	18.4	20.0	5.3	8.8	9.8
1106.285		9.4	14.7	16.2	8.0	13.8	10.2	16.3	12.0	10.9	12.9
.354 1107.284	-	10.0	14.7 4.4	17.0 15.8	6.6 2.2	14.2 13.8	9.9 10.2	12.8	$\frac{12.0}{10.8}$	8.1	12.6
.354	_	6.0	11.2	14.9	5.0	7.1		12.8 17.4	12.0	15.4 14.8	12.5
1108.285	_	15.5	14.5	17.0	9.0	12.6	10.4 9.8	15.9	12.0	10.9	11. 2 12. 8
.354	-	0.0	15.4	16.2	8.0	14.2	10.1	17.4	12.4	15.7	12.5
.424		0.0	14.6	16.0	-4.0	13.2	10.2	15.5	6.7	11.3	10.8
1109.284		13.9	9.1	15.5	4.0	13.8	10.2	16.3	11.0	5.9	9.5
.354		11.5	12.9	13.8	6.4	11.5	10.4	17.9	12.4	10.9	8.4
.423	_	14.9	12.9	15.8	6.0	12.6	10.2	16.9	12.0	13.7	13.7
1110.279	_	10.0	12.9	15.5	8.3	13.8	10.4	16.9	8.7	10.8	14.1
1141.266	_	9.4		15.8	6.0	12.2	11.4	8.4	6.5	9.7	12.9
1143.266		15.2	4.6	17.4	9.0	13.8	11.4	7.3	6.6	15.7	11.2
1302.555		15.5	13.7	15.0	9.0	10.1	36.3	12.8	5.9	15.2	8.4
1303.588 .654		14.9 14.9	3.7	16.2	7.3	10.1	43.5	11.8	5.4	10.8	15.0
1304.636		10.6	8.0 15.1	17.7 15.1	7.3 —3.0	12.7 10.1	45.5	11.4	5.2 6.1	13.7 7.8	13.7
1314.597		7.1	7.0	14.9	3.0 5.5	12.3	41.5 38.1	12.3 10.8	10.8	7.0 9.7	15.0
1316.546	_	13.9		13.8	4.0	11.4	41.5	11.0	9.2	14.8	13.6
.612	_	15.1	11.1	14.9	3.7	11.4	37.1	10.8	11.4	10.8	14.1 11.9
1317.546	_	10.6	14.7	12.3	6.0	5.3	(29.5	10.8	6.5	(9.7)	15.8
.612		11.5	15.7		-5.0	9.3	36.3	8.9	8.5	(9.7)	13.2
1321.613		15.5	4.0		-2.5	10.1	36.3	9.3	6.5	5.9	6.0
1324.548	_	15.9	14.7	10.8	8.0	11.8	34.1	9.6	7.4	8.8	13.6
.616	_	2.3	14.9	9.2	8.6	9.3	34.9	8.9	6.2	10.8	12.2
1325.582	_	13.9	9.9	8.6	2.0	11.8	35.2	7.9	4.9	7.8	8.4
1328.552	_	8.0	14.7	10.4	8.0	12.3	35.6	5.5	11.1	13.9	14.1
.618	_	-1.0	11.9	9.2	0.0	9.9	34.3	5.5	7.4	16.1	13.2
1330.504	_	11.5	16.6	7.7	9.0	12.3	33.8	7.9	12.7	8.8	13.2
.570	_	10.6	5.0	9.2	-2.0	13.5	33.8	8.9	12.0	6.8	12.2

11 росолже	ние т	uon. s	<i>J</i>								
JD hel	TT	№ 2	№ 3	№ 4	№ 5	№ 6	№ 8	№ 9	№ 10	№ 11	№ 13
243											
1331.538		8.0	14.0		7.0	13.7	35.2	6.0	12.4	9.7	5.6
.605	_	17.5		8.6	8.3	13.2 7.1	33.3 33.8	4.0 6.2	11.0 13.1	7.6 14.8	6.3 12.9
1332.570 .639		0.0 5.8			-4.5 -2.0		33.3	4.0	9.4	8.8	13.7
1344.486	_	5.8			6.0		29.5	1.3	7.4	8.8	14.1
.551		8.6			8.0		28.4	0.0	6.1	11.1	14.4
.616	_	11.0		9.2	5.0		28.4	1.3	6.3	11.7	13.7
1356.570	-	14.5			2.0			1.3	13.1	5.9	14.7
1358.427	_	14.9			7.3 5.0		$26.2 \\ 25.6$	5.1 5.1	6.3 10.1	8.8 11.7	14.7 13.6
.492 1415.257	7.2	6.7 11.5			4.0			16.1	9.7	14.3	12.7
1416.256	8.5	10.0			4.0	14.0			5.5		12.6
1652.605	7.2	15.1			8.0	7.9	24.0	21.0	6.8	14.3	14.4
1653.602	8.9	14.2		9.2	-2.0	7.9	25.1	22.0	6.5	13.4	13.4
1654.601	7.2	10.2		8.3	8.0			20.2	7.4	8.4	14.4
1657.588	7.2	15.1			4.7			19.8	10.5	10.7	13.2 5.9
1670.643	4.2 5.7	14.8 13.9						12.8 9.9	11.8 9.7	8.8 9.7	6.3
1674.611 1675.578	7.2	14.2						9.2	5.8	8.0	14.7
1676.641	7.2	11.5						6.2	7.4	7.0	9.5
1677.610	8.9	2.7	9.1					7.5	5.3	9.7	13.4
1680.579	4.2	11.5	14.5					9.9	11.7	8.2	7.2
.646	5.7	11.5	15.5					6.5	5.3	8.4	8.4
1682.513	13.8	15.1						6.9 8.4	11.8 11.6	14.3 17.9	8. 4 9.6
.580 .646	14.9 10.7	15.1 0.9						9.3	8.5	8.8	10.5
1683.547	5.7	15.1						4.0	11.8	12.7	14.1
.614	_	15.1						6.9	12.4	16.5	14.4
1687.601		15.1		9.7	8.0			6.9	12.4	10.9	14.7
1698.552		7.1				14.5		6.4	7.4	16.7	8.4
.618	_	8.4						5.1 5.8	6. 3 7 .4	10.8 9.7	12.7 12.7
1699.555 .619		5.3 0.0						6.6	7.4	11.7	15.8
1701.456	_	9.2						4.0	11.7	13.4	13.6
.524		11.5						4.0	11.8	8.2	14.9
.591	_	14.8						4.0	8.5	5.9	14.3
1702.488	_	7.1						5.0	12.4 11.8	13.4 10.8	8.4 11.2
.555 .621		9.6 11.5			8.0 7.3		9.5 10.4	5.8 5.6	6.2	8.1	10.8
1710.428	_	7.7						4.0	6.5	8.2	13.6
.493		10.0						5.1	7.4	7.8	7.5
.558	_	10.6						7.3	10.8	8.2	12.2
.623		10.6						4.0	12.0	10.8	12.6
1711.562	_	6.7			3.			6.5	11.4	5.9	14.1
.627		9.5			7 8.9			5.1 7.9	13.1 12.0	9.7 16.1	8.4 13.2
1712.491 .556		15.5 0.0			7 9.1 7 6.	-		6.0	10.6	8.8	10.5
.621		4.3						5.1	12.4	5.9	14.1
1713.464		14.9		6 7.7	7 6.	0 12.3	3 7.6	8.4	8.7	12.7	13.7
.529		11.	5 12.	8 6.1	i 8.	0 12.8	7.9	6.0		14.7	15.0
.594		14.						5.8		12.7	11.2 9.8
1729.494		6.5						8.9 11.4		14.8: 15.7	6.0
.559	-	0.0	0 16.	6 7.	, _Z .	U 0.0	J 0.9	11.4	11.4	10.7	0.0

11 росоля	сение	тиол.	00								
JD hel	тт	№ 2	№ 3	№ 4	№ 5	№ 6	№ 8	№ 9	№ 10	№ 11	№ 13
243											
1757.337	7.2	9.6	5.6	7.7	8.0	8.8	20.3	13.8	11.8	14.1	6.7
1758.339	8.9	0.9	14.9	7.7	7.0	9.8	17.4	11.4	12.7	8.8 7.6	13.9 5.9
1759.310	7.2	15.5	4.8	8.6	8.0	10.2	18.3 19.4	11.8 11.8	13.6 10.4	8.2	6.5
.375	7.2	15.3 15.8	9.9 14.0	9.7 8.3	-4.5 8.0	8.8 10.9	17.4	11.8	12.7	8.2	15.0
1760.344 .409	5.7 5.7	14.9	14.7	8.3	9.0	11.7	17.4	11.2	7.4	8.2	16.0
.474	7.2	15.8	15.1	9.2	8.3	11.1	17.4	11.7	6.3	9.7	15.8
.539	5.7	6.7	5.3	8.8	8.3	10.7	16.5	11.8	6.7	13.1 11.3	15.0 6.7
1761.377	5.7	14.5	12.5	8.3	-3.0	11.7	19.6 17.4	11.9 11.9	13.4 6.5	7.8	10.1
.442	5.7	15.1 15.1	12.7 14.7	7.7 9.2	-1.0 0.0	9.8 8.8	20.0	11.7	7.4	8.2	10.9
.507 .572	7.2 7.2	15.5	14.7	8.3	3.7		21.8	11.0	9.8	9.7	13.2
1764.313	5.7	15.1	15.2	8.3	8.8	10.7	20.7	11.9	11.8	8.4	15.3
.378	5.7	14.5	12.5	8.3	8.0		20.7	11.8	13.0	9.7 15.7	14.7 14.7
.509		0.0		8.3			20.7 20.7	12.8 11.9	7.4 7.4	11.7	9.5
.574	4.2 7.2	1.9 11.5		7.7 7.7	6.0 8.0		23.1	16.4	10.4	10.8	13.6
1771.557 1783.265		8.6		9.2	8.0		27.8	19.2	11.8	8.2	7.4
.330		10.4		7.7	7.7	14.5	28.4	20.0	11.8	14.3	9.6
1785.293		15.1		7.7	7.7		28.4	19.2	8.7	8.7 8.1	8.4 10.5
.334		15.5		7.7	1.5		29.5 28.4	20.0 20.0	9.4 9.4	8.8	11.2
.399 1843.279		1.0 14.8		7.7 9.2			(41.5	21.0	6.5	15.7	13.6
1873.279		15.1		13.8	4.9	8.8	(41.5	11.9	12.7	10.8	6.5
2012.657	7.2	13.9	14.7	9.4	6.3	8.8		22.0	8.7	8.4	11.2 9.6
2035.601		2.9		9.4			10.4	15.1 19.6	8.7 9.1	9.7 7.2	12.6
2037.589		11.0		6.7 9.4			9.5	14.0	11.8	7.2	12.6
.654 2039.537		9.9 0.0		8.1				15.1	5.9	9.7	8.4
.602		2.1		9.4	6.0	7.7	13.9	15.1	12.0	13.4	9.5
2040.606	7.2	6.2	2 - 5.3	8.2				14.8	9.1	9.7 12.7	13.6 11.2
2054.606	7.2					8.8 8.8		9.5 6.9	6.3 12.7	7.8	
2055.542 .607									7.4		13.2
2059.54								8.4	11.1		
.607	78.9		5 14.5	11.6	5 ←1 .			6.2	12.2		
2060.54								2.7 4.0	10.8 10.6		
2061.54	3 5.7								11.4		
.60 2063.64		11.					3	6.9	9.1	7.2	
2067.53						8.8	3 21.8		5.9		
.60	4 5.7	13.							6.2		
2068.56	9 16.4								6.2 7.4		
.63										_	7 15.0
2069.59 2070.59						-			7.4	13.7	
2076.33				7.	3 8.	.3 9.8	31.5	9.0			
2098.61	1 7.5	2 10.									2 11.0 3 14.0
2109.40											
2117.37		2 9. 7 — 1.									7 12.2
2142.29 .36			.0 6.4			0 10.			8.7	7 9.	7 12.6
2385.59					_	.3 6.	6 34.6	5 22.0	12.0	0 15.	7 13.4

JD hel	TT	№ 2	№ 3	№ 4	№ 5	№ 6	№ 8	№ 9	№ 10	№ 11	№ 13
243 2453.620 2804.523 2826.435 2878.292	5.7 7.2 5.7 5.7	11.5 15.1 11.0 10.6	12.8 14.7 13.4 12.9	17.0 11.6: 11.6 11.6	7.3 7.0 7.7 2.0	7.7 8.8 9.8 13.2	(37.1 17.9 10.6 11.4	8.8 9.5 12.8 18.0	9.1 12.0 9.1 12.0	8.1 11.9 8.4	15.8 13.7 13.8 11.2

Таблица 56. Гарвардские наблюдения звезд созвездия Horologium (Серия RB)	Таблица 8 (Серия RB)	. Гарвардские	наблюдения	звезд созвездия Horologium
--	-------------------------	---------------	------------	----------------------------

	,					
JD hel	TT	357	№ 2	№ 3	№ 4	№ 13
242		<u></u>				'
5560.462	5.6	1.9	8.6	10.77	10.0	
5568.401	5.8	1.2	0.0	13.7	12.6	9.6
5589.360	8.9	5.3	4.2	6.2 14.1	12.6	8.4
5612.363	8.1	1.2	17.5	13.7	7.7	13.2
5615.366	8.2	2.4	7.3	4.4	9.2	15.0
5642.299	12.4	4.8	14.5	4.4 15.5	6.9	10.5
5654.287	7.2	2.3	2.9	13.7	11.0	15.3
5825.613	5.8	2.0	12.9	13.7 14.7	10.6	7.6
5886,565	5.9	2.7	13.5	11.4	10.5	14.7
5913.458	16.9		10.0	11.4	12.0	14.7
5944.355	6.2	2.0	11.5	6.2	11.6	_
5950.414	6.3	1.4	13.9	14.7	11.6	4.2
5984.335	6.4	1.0	10.0	10.1	9.4	7.0
6006.294	7.2	-1.0	11.5	12.8	9.4 11.6	14.1
6013.283	8.9	1.0	11.0	5.3	9.4	14.7 6.7
6182.604	8.5	1.6		12.8	9.4	(6.5)
6210.613	7.2	3.3	12.5	14.7	10.9	6.5
6237.560	7.2	2.0		14.7	9.4	0.0
6245.561	10.4	0.0	10.4	5.6	7.3	13.7
62 68.516	7.2	7.5	13.5	14.7	7.3	15.8
6323.352	7.2	0.0		4.8	10.9	15.5
6559.587	5.6	2.5	14.5	3.6	8.5	7.6
6566.613	6.2	1.6	13.5	12.8	8.4	15.0
6573.611	5.9	1.0	6.9	12.8	12.0	15.0
6626.570	5.6	2.5	5.2	2.4	6.3	11.6
6675.408	6.2	1.4	10.4	12.9	7.3	6.5
6682.378	5.2	7.5	11.5	14.7	10.5	13.2
6683.411	5.8	0.0	13.5	14.7	11.0	10.3
6717.353	5.7	2.5		4.4	12.0	14.1:
6726.303	7.2	4.1		8.0	12.7	6.3
6771.264	7.2	2.3	5.0:	14.7	9.4	16.9
6915.655	6.2	3.1	_	6.2	10.5	8.4
6950.622	7.2	1.6	11.5	12.8	9.4	15.8
6970.541	7.2	2.5	_		9.4	_
6988.471	7.2	1.0	_	10.6	9.4	13.7
7039.437	7.2	2.0		_	9.4	
7044.363	9.8	0.0		5.3	8.5	
7090.331	7.2	2.5		12.0:	11.8	

21 pooonsecret	maon.					
JD hel	TT	357	№ 2	№ 3	№ 4	№ 13
242	·					
7096.300	6.2	5.1		_	11.6	14.3
7 156.251	8.2	2.5	2.6	9.9	11.2	11.3
7310.625	8.1	3.3		15.5	11.6	15.5
734 0.55 7	7.2	1.6		8.0	10.9	9.4
7399.431	7.2	0.0	 .	_	6.6	
7426.353	9.8	2.0	10.4	12.8	9.4	10.5
7445.354	5.2	1.0	5.3	4.4	8.2	15.8
7454.336	6.2	2.5			7.3	7 .4
7475.287	6.2	<u>'</u>	10.4	9.9	5.9	
76 58.637	6.2	2.8	13.5	$12.7 \\ 2.4$	12.0 14.8	3.0 14.1
7688.617	5.2	0.0	10.4	13.7	14.6	15.8
7722.519	5.2	0.0	10.4 10.1	13.7	8.4	14.1
7726.521	8.2	2.5	6.2	14.7	8.2	9.6
7747.528	9.5 7.2	0.0 0.0	11.5	7.1	12.0	15.8
7754.412 7808.293	7.2 7.2	1.6	11.5	12.8	10.9	6.5
80 13.666	7.2	1.0	11.5	4.0		7.5
80 45.628	5.2	2.5	_	14.7	11.2	13.6
8064.547	5.7	1.0	13.0	3.8	7.0	10.5
8099.542	0.0	-1.0	10.6	9.9	6.7	12.7
8136.358	5.2	0.0	_	14.7	8.2	12.7
8394.623	8.9	2.1	6.2	14.7	7.3	14.1
8400.620	6.2	4.1	15.1	5.1	8.1	11.3
8428.594	5.2	-1.0	10.2	14.7	6.7	15.8
8512.304	7.2	1.0	12.5	14.7	9.4	9.5
8542.385	12.4	1.0	10.6	12.8	6.3	14.1
8 566.298	7.2	4.1	4.8	13.2	11.9	15.8
8756.573	10.3	8.6	4.6	4.8	10.9	6.9
8776.636	8.5			7.1		10.8
8791.536	7.2	0.0	2.0:	14.1	9.4	17. 4 10.5
8821.514	7.7	5.2	4.8	1.8	8.2 7.5	10.3
8877.303	15.2	2.3	10.4 12.5	14.7 15.1	9.4	14.1
8926.304	9.3 15.2	5.4 0.0	10.4	11.8	7.5	12.0
9154.567 9185.468	0.0	2.3	10.4	14.2	8.4	13.2
9204.444	9.3	-1.0	10.1	13.2	6.3	14.4
9214.452	7.2	1.6	1.9	12.8	4.7	15.8
9228.544	5.2	0.0	9.9	12.8	5.1	9.5
9246.388	6.2	1.4	15.1	4.8	7.3	11.3
9267.382	7.2	0.0		14.1	16.7	11.1
9288.385	16 .4	5.2		10.0	7.3	13.7
9313.288	7.2	6.8	7.3	5.6	9.4	13.4
9442.628	6.2	2.0	3.1	9.1	10.3	12.7
9499.493	7.2:	2.3	14.5	10.9	15.8	9.5
9501.578	8.5	4.1	10.4	15.2	12.3	14.7
9508.564	7.2	1.8		12.8	7.9	8.4
9519.502	6.2	-1.0	9.6	13.5 14.1	9.4 10.9	12.9 15.8
9545.590	9.3	2.5	11.0 6.2	14.1	5.6	6.7
9573.577	$5.2 \\ 5.2$	1.6 1.6	3.1	6.4	7.0	13.2
9584.369 9 605.297	5.2 7.2	1.0	4.8	13.4	17.7	9.4
9629.410	9.3	4.1	15.1	5.7	19.7	14.4
9650.311	6.2	1.4		13.7	7.7	14.7
3000.011	0.2	4.4				

JD hel TI	357	№ 2	№ 3	№ 4	30.10
					№ 13
9826.632 5 9855.513 9 9863.594 10 9867.533 7 9877.580 5 9904.584 8 9913.458 11 9925.514 7 9945.445 5 9954.524 5 9963.294 6 9968.298 7	.2 3.1 .2 0.0 .9 4.1	15.1 3.1 8.4 11.5 10.4 10.2 8.4 15.5 9.4 — 10.0 5.2 4.8	13.4 13.7 12.9 9.9 4.6 12.7 14.4 13.7 6.2 6.2 9.2 14.0 13.4	10.5 5.2 12.3 12.3 10.5 6.6 8.5 8.2 8.5 10.9 7.8 7.3 9.4	5.9 10.1 13.7 6.9 8.4 9.5 10.3 12.0 15.8 15.5 14.7 15.0 10.5
0193.645 0201.644 0240.623 0257.517 0281.589 0282.411 60289.392 404 427 0290.459 0299.373 441 0305.552 0313.347 18 383 0318.389 0319.534 0325.332 0344.389 0351.329 0364.327 0418.27 0427.272 0556.645 0591.618 0618.505 0639.592 0647.431 0665.586 06679.494	.0 3.1 .0 1.0	7.3 0.0 9.7 10.6 8.6 15.5 10.4 10.4 11.5 11.0 13.0 10.6 15.1 15.5 11.0	(13.7) 14.7 4.2 14.7 11.4 10.9 — — — — — — 6.2 — — 12.9 — — 14.5 10.2 — 10.9 — — 14.0 — 3.2 14.7 14.1 12.9 14.7 13.4	12.3 11.6 8.2 8.2 6.7 11.6 9.4 9.4 9.4 9.4 10.5 7.3 15.8 16.7 14.9 10.9 9.4 8.5 7.7 7.3 9.4 8.5 7.7 9.4 8.5 7.7 9.4 8.6 11.3 8.2 8.5 7.6 6.3	13.2 14.3 14.4 15.0 10.8 14.3 15.8 10.5 15.8 15.8 15.8 15.8 16.7 14.1 16.2 14.1 6.5 5.2 15.8 15.8 7.4

11 россиястие	maon. o					
JD hel	ТТ	357	№ 2	№ 3	№ 4	№ 13
243 0945.574 0975.608 1003.430 1052.370 1062.350 1107.388 1113.400 1156.275 1289.643 1297.536 .619 1298.557 1303.628 1312.575 1319.570 .581 .605 1325.554 .564 .589 1326.551 .562 .586 1327.548 .559 .583 1358.507 1376.387 1415.364 1430.302 1443.381 1636.625 1650.641 1656.632 1668.606 1670.642 1681.574 1697.559 1703.556 1713.506 1734.346 1774.382 1754.346 1774.382 1754.346 1774.382 1754.346 1774.382 1754.346 1774.382 1754.346 1774.382 1754.346 1774.382 1754.346 1774.382 1754.346 1774.382 1754.346 1774.382 1754.346 1774.385 1754.346 1774.382 1754.346 1774.382 1754.346 1754.346 1774.382 1755.341 100.503	9.8 7.2 10.3 6.2 10.3 7.2 6.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	2.3 1.4 3.3 -1.0 3.1 1.6 2.7 1.0 1.4 2.7 5.1: 2.3 1.4 4.1 2.3 3.5 1.8 1.0 2.7 1.0 3.1 5.4 2.0 0.0 2.5 0.0 3.1 1.4 1.0 0.0 -1.0 2.5 2.5 1.4 1.4 1.4 2.5 2.0 4.1 3.1 1.4 1.4 1.5 1	14.5 13.9 7.3 11.5 16.0 8.6 11.5 2.3 5.8 15.1 13.5	14.4 13.4 14.7 14.7 6.2 9.1 14.5 13.7 14.7 6.2 4.8 11.4 5.6 13.7 9.9 9.0 12.9 9.0 14.0 14.7 12.9 13.2 11.7 14.7 10.0 11.7 12.9	15.6 8.2 9.4 16.0 16.7 15.0 17.0 17.4 13.8 15.3 14.9 15.5 10.5 8.5 10.5 8.5 10.5 8.5 11.2 9.4 11.6 9.4 8.5 11.2 13.8 7.3 16.7 14.9 10.9 7.3 8.4 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9	5.6 13.6 13.6 13.6 13.6 12.2 14.3 14.1 13.7 14.1 13.7 14.1 15.7 15.8 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 11.9 15.8 14.1 15.8 14.1 15.8 14.1 15.8 14.1 15.3 15.5 15.0 12.2 11.3
2067.587 2069.614 2070.588	7.2 5.2 7.2	0.0 2.0 0.0	11.5 — 0.0	7.0 3.0 12.9	8.2 7.3 9.4	16.0 6.9
2175.325	7.2	1.4		10.0	7.3	_

JD hel	TT	357	№ 2	№ 3	№ 4	№ 13
243						<u> </u>
2178.293	4.7	9.1		4.4	9.4	13.7
2209.302	9.8	2.3	15.1	5.3	14.9	15.8
2230.290	18.0	3.1	13.9	13.7	11.6	12.7
2388.632	8.5	1.4	-	-	8.4	-
2389.653	6.2	0.0	2.1	9.0	9.4	7.2
2441.590	8.9	0.0	2.9	4.0	11.3	13.6
2503.370	5.2	0.0	10.4	3.6	9.4	13.7
2527.373	7.2	3.1	6.2	11.4	15.8	11.6
2800.582	7.2	0.0	16.0	13.7	7.3	15.8
2822.507	10.7	0.0	16.0	14.7	10.9	13.7
2880.332	6.2	1.0	1.0	14.0	8.2	10.5
2905.367	7.2	3.1	14.5	14.7	11.6	14.7
2942.306	11.1	3.1	15.1	11.8	5.2	15.8
3158.544	6.2	0.0	15.5	13.7	10.9	11.9
3178.544	7.2	1.6	7.7	11.5	9.4	11.3
3241.368	6.2	1.4	10.0	14.0	9.4	11.3
3264.382	7.2	1.4	6.7	10.2	9.4	8.4
3294.379	14.6	1.4	10.0	15.5	8.2	10.5
3487.630	6.2	1.6	11.5	6.2	15.8	10.1
3538.544	5.2	2.7	11.5	7.0	8.2	9.4
3573.511	14.6	3.1	11.5	14.4	10.9	13.2
3598.371	6.2	1.4	14.5	9.0	11.6	15.5
3651.381	6.2	0.0	10.6	13.2	7.7	10.5
3 675.366	6.2	1.4	4.8	14.7	6.3	15.8
3977.360	6.2	1.4	13.0	5.3	17.7	13.2
3999.376	10.3	2.0	1 4. 5	6.2	9.4	10.5

Таблица 57. Гарвардские наблюдения звезд созвездия Horologium (Серия АХ)

JD hel	тт	357	№ 2	№ 3	№ 4	№ 8	№ 13
242 4025.839 4035.859 4055.840 4083.776 4091.721 4139.606 4162.557 4359.891 4413.812 4508.600 4529.549 4536.536 4562.542 4759.801 4769.827 4800.838 5179.391	7.6 5.8 6.2 6.2 8.5 7.2 9.6 18.2 5.1 5.6 5.1 15.7 6.3 5.1 4.5	2.6 3.2 1.6 2.0 2.5 6.1 2.7 3.1 0.0 1.0 3.1 2.7 3.1 —1.0 0.8 0.0 2.5	9.9 11.5 11.5 13.5 14.5 11.5 4.2 8.4 11.5 3.1 11.5 13.9 3.8	14.7 10.6 9.1 14.7 1.8 14.7 13.7 14.7 13.7 8.0 3.2 14.7 14.7 14.7 15.5 10.9	8.2 10.5 8.5 9.4 14.9 7.7 13.8 9.4 10.5 9.4 12.3 12.0 7.5 9.4 8.4 8.4 7.7	(21.8 (21.8 (26.8 (21.8 (21.8 ————————————————————————————————————	15.8 15.8 8.4 7.4 8.4 15.8 15.5 15.8 20.2 14.7 10.8 9.5 11.9 7.5 15.8

JD hel	TT	357	№ 2	№ 3	№ 4	№ 8	№ 13
242							
5203.406	4.3	1.0	11.5	5.1	9.4	(26.8	9.5
5231.359	5.0	8.2	4.8	12.9	6.6	(21.8	11.9
5238.364	7.2	3.1	15.1	12.9	6.8	(29.5	16.2
5265.302	7.2	6.8	8.0	8.0	11.6	(29.5	16.0
5294.310	7.2	6.8	11.5	12.9	10.9	(21.8	10.3
5469.610	8.5	1.0	0.0:	14.0	10.9	(21.8	11.9
5479.629	9.4	0.0	11.5	12.3	11.6	29.8	9.4
5526.509	7.2	2.7		6.2	8.1	(21.8	13. 2
5533.499	10.0	9.2	7.3	14.7	9.4	(21.8	17.0
7641.658	4.1		_	3.0		_	_
7727.459	10.7	2.5	11.5	11.7	11.6	-	7.6
7740.441	5.2	1.4		-	7.3	23.3	_
8398.585	7.2	3.1	_	_	7.5:	_	
8400.561	4.8	1.6	-				
8423.512	6.2	2.7			10.5	(37.1	
8804.466	4.8		_	13.0			-
.510	8.2	4.1	0.0:	13.0	11.2	10.4	
8815.378	4.8	-		10.0	-		-
8817.393	6.0			13.0		-	6.7
8864.316	6.2	2.0		11.0	7.7	13.4	-
8897.280	6.0		-				-
9134.505	$\frac{12.4}{7.2}$		_	10.0		_	10.5
9216.261 9519.517	$\frac{7.2}{7.2}$	_	_	10.0		_	10.5
9519.517	15.4				_	-	
9526.499	7.2			_			
243	1.2						
0564.570	4.1		_	7.0	_	_	
0589.536	7.2	_				-	
0665.342	12.9						
1327.545	9.3			_	8.2	(29.5	
2067.533	6.2	0.0			7.3	19.3	
2500.343	6.2		_	_	5.4	27.3	_

Таблица 58. Гарвардские наблюдения звезд созвездия Horologium (Серия АМ)

JD hel TT 357 № 4 JD hel	тт	357	№ 4
			l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.4 6.2 5.1 4.8 5.9 7.2 7.2 5.4	1.0 2.0 5.1 3.3 2.0 2.7 0.0	16.8 9.4 7.7 7.7 8.1 10.4 11.2 9.4 10.5

JD hel TT 357 № 4 JD hel TT 357 № 4 241 6043.717 7.2 1.6 12.0 9971.893 5.7 2.0 17.1 6050.388 6.2 — — 242 6166.541 4.1 2.5 12.7 0008.855 8.6 2.5 11.2 6330.859 6.2 — 10.3 3090.735 5.6 0.0 12.0 6335.762 7.2 2.2 12.7 0423.745 5.1 0.0 12.0 6407.628 5.1 1.8 11.9 0402.774 4.1 1.0 12.0 6407.628 5.1 1.8 11.6 0447.659 6.0 2.0 12.7 6407.628 5.1 1.8 11.6 0485.707 6.2 3.1 12.0 6419.686 4.5 0.0 12.0 0481.692 5.5 0.0 11.8 6451.544 4.8 1.8 11.9 0447.659	- Poolition	· muon.	. 00			_		
6043.717 7.2 1.6 12.0 9971.893 5.7 2.0 17.1 6050.388 6.2 — — 242 — 242 —	JD hel	TT	357	№ 4	JD hel	TT	357	№ 4
6043.717 7.2 1.6 12.0 9971.893 5.7 2.0 17.1 6050.388 6.2 — — 242 — 242 —	041							
6050.388 6.2 — 242 2		= 0		100				
6166.541 4.1 2.5 12.7 0008.855 8.6 2.5 11.2 6290.890 6.3 0.0 14.8 0020.811 5.2 — — 6330.859 6.2 — 10.3 0390.735 5.6 0.0 12.0 6344.820 7.2 3.1 11.9 0402.774 4.1 1.0 12.0 6355.762 7.2 2.2 12.7 0423.745 5.1 0.0 12.0 6407.628 5.1 2.5 12.0 0425.732 7.2 2.0 12.7 6407.628 5.1 1.8 11.6 0447.659 6.0 2.0 12.0 6419.686 4.5 0.0 12.0 0481.692 5.5 0.0 11.8 6461.616 16.8 9.2 11.6 0485.707 6.2 3.1 12.0 6467.727 7.2 0.0 8.5 0486.696 4.1 1.6 11.6 6615.544 4.8 1.8 11.9 6684.881 5.1 0.0 9.4 0726.247 4.8 — 6731.809 5.4 2.5 11.2 0738.853 4.0 — 6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6761.74 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6760.778 6.0 2.2 8.6 0776.769 5.1 — 6766.694 11.8 2.5 10.5 844 6.2 0.0 15.8 6789.649 5.4 2.5 12.0 0778.730 5.1 — 6766.694 11.8 2.5 10.5 844 6.2 0.0 15.8 6789.649 5.4 2.5 12.0 0778.730 5.1 — 6799.607 9.0 0.0 12.0 0778.730 5.1 — 6795.869 5.1 1.6 8.5 0817.640 5.1 — 6860.577 10.0 5.1: 12.0 0806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7055.869 4.1 5.2 11.6 0835.607 7.2 — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7075.869 4.1 5.2 2.9 1.16 1155.773 6.0 — 7242.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.2 1.6 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.2 1.4 1155.726 7.2 — 7499.705 14.2 2.5 10.5 0838.621 7.2 2.5 11.2 7499.705 14.2 2.5 10.5 0838.621 7.2 2.5 11.6 12.7 12.0 1158.664 6.0 — 7499.705 14.2 2.5 10.5 0838.621 7.2 2.5 11.2 7499.705 14.2 2.5 10.5 0838.621 7.2 2.5 11.6 0.5 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11			1.6	12.0	9971.893	5.7	2.0	17.1
6290.990 6.3 0.0 14.8 0020.811 5.2 — <td></td> <td></td> <td>2.5</td> <td>10.7</td> <td></td> <td>0.6</td> <td>0.5</td> <td>110</td>			2.5	10.7		0.6	0.5	110
6330.859 6.2 — 10.3 0390.735 5.6 0.0 12.0 6344.820 7.2 3.1 11.9 0402.774 4.1 1.0 12.0 6407.68 5.1 2.5 12.0 0425.732 7.2 2.0 12.0 6407.68 5.1 1.8 1.6 0487.659 6.0 2.0 12.0 6419.686 4.5 0.0 12.0 0481.692 5.5 0.0 11.8 6467.727 7.2 0.0 8.5 0486.696 4.1 1.6 11.6 6584.881 5.1 0.0 9.4 0726.247 4.8 — — 6713.809 5.4 2.5 11.2 0738.853 4.0 — — 6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6780.778 6.0 2.2 8.6 0776.769 5.1 — — 6780.679 9.0 0.0							2.5	11.2
6344.820 7.2 3.1 11.9 0402.774 4.1 1.0 12.0 6355.762 7.2 2.2 12.7 0423.745 5.1 0.0 12.0 6400.768 5.1 2.5 12.0 0425.732 7.2 2.0 12.7 6407.628 5.1 1.8 11.6 0447.659 6.0 2.0 12.0 6419.686 4.5 0.0 12.0 0481.692 5.5 0.0 11.8 6461.616 16.8 9.2 11.6 0485.707 6.2 3.1 12.0 6467.727 7.2 0.0 8.5 0486.696 4.1 1.6 11.6 6515.54 4.8 1.8 11.9 6684.881 5.1 0.0 9.4 0726.247 4.8 — 6713.809 5.4 2.5 11.2 0738.853 4.0 — 6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6760.778 6.0 2.2 8.6 076.769 5.1 — 6766.694 11.8 2.5 10.5 8.44 6.2 0.0 15.8 6789.649 5.4 2.5 10.5 8.44 6.2 0.0 15.8 6789.649 5.4 2.5 12.0 0778.730 5.1 — 6799.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 — 2.0 12.7 0803.743 7.2 1.6 17.4 6860.577 10.0 5.1: 12.0 0806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 1.6 12.7 7053.804 5.1 1.6 8.5 0817.640 5.1 0.0 1.6 12.7 7053.804 4.5 1.1 6.8 5.8 817.640 5.1 0.0 1.5 5.7 7058.89 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7108.834 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 718.834 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 718.834 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 718.834 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 718.834 7.2 2.5 10.5 0838.621 7.2 2.7 13.8 153.706 11.6 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7198.834 7.2 2.5 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7198.834 7.2 2.5 10.5 0838.621 7.2 2.7 13.8 747.845 7.2 2.5 7.0 1157.733 6.0 — 72842.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.5 7.0 1157.733 6.0 — 72842.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.5 7.0 1157.733 6.0 — 72842.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.5 7.0 1157.733 6.0 — — 7489.705 14.2 2.5 10.5 751 7.2 2.5 11.2 7531.760 7.2 2.3 9.4 795 6.0 2.7 11.6 791.876 10.0 2.5 12.0 1170.710 7.2 2.0 12.0 7836.788 7.2 1.4 16.7 1202.510 4.8 — — 8278.591 5.1 1.6 8.1 1487.831 8.3 0.0 14.8 8591.812 7.2 2.5 9.4 1158.895 6.0 2.7 11.6 8561.874 5.1 1.6 8.1 1487.831 8.3 0.0 14.8 8591.826 9.5 5.9 9.4 1509.707 4.8 — — 8278.591 5.1 1.6 8.5 8591.777 9.4 6.1	6330.859		U.U				<u></u>	12.0
6355.762 7.2 2.2 12.7 0423.745 5.1 0.0 12.0 6407.628 5.1 2.5 12.0 0425.732 7.2 2.0 12.7 6407.628 5.1 1.8 11.6 0447.659 6.0 2.0 12.0 6419.686 4.5 0.0 12.0 0481.692 5.5 0.0 11.8 6467.727 7.2 0.0 8.5 0486.696 4.1 1.6 11.6 6584.881 5.1 0.0 9.4 0726.247 4.8 — — 6713.809 5.4 2.5 11.2 0738.853 4.0 — — 6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6731.774 7.2 0.0 12.3 0767.699 5.1 — — 6760.778 6.0 2.2 8.6 0776.769 5.1 — — 6789.649 5.4 2.5			3.1					
6400.768 5.1 2.5 12.0 0425.732 7.2 2.0 12.7 6407.628 5.1 1.8 11.6 0447.659 6.0 2.0 12.0 6419.686 4.5 0.0 12.0 0481.692 5.5 0.0 11.8 6461.616 16.8 9.2 11.6 0485.707 6.2 3.1 12.0 6467.727 7.2 0.0 8.5 0486.696 4.1 1.6 11.6 11.6 6515.544 4.8 1.8 11.9 6884.881 5.1 0.0 9.4 0726.247 4.8 — 6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6780.778 6.0 2.2 8.6 076.769 5.1 — 5666.694 11.8 2.5 10.5 844 6.2 0.0 15.8 6789.649 5.4 2.5 12.0 0778.730 5.1 — 56766.694 11.8 2.5 10.5 844 6.2 0.0 15.8 6789.649 5.4 2.5 12.0 0778.730 5.1 — 56818.551 7.2 — 2.0 12.7 0803.743 7.2 1.6 17.4 6860.577 10.0 5.1: 12.0 0806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 0835.607 7.2 — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 70797.800 7.2 1.8 8.4 0932.581 — 2.7 7122.843 4.5 — 1.0 12.0 1134.812 6.0 1.8 12.0 7172.701 9.7 4.1 13.8 1153.706 11.6 — 7144.681 7.2 2.2 17.4 1155.726 7.2 — 7242.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.5 7.0 1157.733 6.0 — 7249.705 1.4 2 2.5 10.5 11.6 156.678 4.5 1.9 10.5 7447.845 7.2 2.5 7.0 1157.733 6.0 — 725.869 6.2 2.5 7.0 1157.733 6.0 — 725.869 6.2 2.5 7.0 1157.733 6.0 — 725.869 6.2 2.5 7.0 1157.733 6.0 — 725.5 11.6 12.0 12.0 1134.812 6.0 1.8 12.0 7192.843 4.5 — 1.0 12.0 1134.812 6.0 1.8 12.0 7192.843 4.5 — 1.0 12.0 1134.812 6.0 1.8 12.0 7192.843 4.5 — 1.0 12.0 1134.812 6.0 1.8 12.0 7192.843 4.5 — 1.0 12.0 1134.812 6.0 1.8 12.0 7192.843 4.5 — 1.0 12.0 1134.812 6.0 1.8 12.0 7192.843 4.5 — 1.0 12.0 1134.812 6.0 1.8 12.0 7192.843 4.5 — 1.0 12.0 1134.812 6.0 1.8 12.0 11.6 0.0 1.5								
6407.628 5.1 1.8 11.6 0447.659 6.0 2.0 12.0 6419.686 4.5 0.0 12.0 0481.692 5.5 0.0 11.8 6461.616 16.8 9.2 11.6 0485.707 6.2 3.1 12.0 6467.727 7.2 0.0 8.5 0486.696 4.1 1.6 11.6 11.6 6515.544 4.8 1.8 11.9 6684.881 5.1 0.0 9.4 0726.247 4.8 — 6713.809 5.4 2.5 11.2 0738.853 4.0 — 6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6760.778 6.0 2.2 8.6 0776.769 5.1 — 6766.694 11.8 2.5 10.5 .844 6.2 0.0 15.8 6789.649 5.4 2.5 12.0 0778.730 5.1 — 6799.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 — 2.0 12.7 0803.743 7.2 1.6 12.7 0753.904 5.1 1.6 8.5 0817.640 5.1 0.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 1.6 12.7 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 -7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 -7108.834 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 7122.843 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 7122.843 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 7122.843 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 7122.843 7.2 2.2 17.4 1155.706 11.6 — 72442.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.2 17.4 1155.766 7.2 — 7242.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7449.705 14.2 2.5 10.5 0.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 7499.705 14.2 2.5 10.5 10.5 1157.733 6.0 — 11.6 1156.788 7.2 10.9 1125.888 7.2 0.0 11.6 8.6 6.0 1.8 1191.695 8.7 2.0 11.6 8.5 8.9 7.2 1.4 16.7 1200.510 4.8 — — 8455.889 7.2 0.0 11.6 8.1 1487.831 8.3 0.0 14.8 8.9 1.9 1.0 1.0 1.5 1151.731								
6419.686	6407.628							
6461.616 16.8 9.2 11.6 0485.707 6.2 3.1 12.0 6467.727 7.2 0.0 8.5 0486.696 4.1 1.6 11.6 11.6 6515.544 4.8 1.8 11.9 6684.881 5.1 0.0 9.4 0726.247 4.8 — 6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6760.778 6.0 2.2 8.6 0776.769 5.1 — 6766.694 11.8 2.5 10.5 844 6.2 0.0 15.8 6789.649 5.4 2.5 12.0 0778.730 5.1 — 6799.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 — 2.0 12.7 0803.743 7.2 1.6 12.0 806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 0835.607 7.2 — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7184.681 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 7172.701 9.7 4.1 13.8 1153.706 11.6 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.2 17.4 1155.726 7.2 — 7184.681 7.2 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.5 7.0 1157.733 6.0 — — 7499.705 14.2 2.5 10.5 13.6 1156.7864 6.0 — — 7499.705 14.2 2.5 10.5 13.6 1191.695 8.7 2.0 12.0 12.0 138.604 6.0 — — 7499.705 14.2 2.5 10.5 12.0 1170.710 7.2 2.5 11.6 8651.874 5.1 1.6 8.1 1191.695 8.7 2.0 11.6 8658.639 5.1 1.0 0.8 1512.731 7.2 — 8278.591 5.1 3.6 12.0 1271.527 4.2 2.5 11.6 8658.639 5.1 0.0 15.5 1512.731 7.2 — 8278.591 5.1 3.6 12.0 1271.527 4.2 2.5 11.6 8658.639 5.1 0.0 10.5 1512.731 7.2 — 8282.860 4.1 1.0 8.8 1521.690 4.1 — — 8265.762 — 0.0 8.3 1564.664 5.2 1.6 8.5 8599.777 9.4 6.1 8.1 1566.603 5.1 — —	6419.686	4.5	0.0	12.0			0.0	
6467.727 7.2 0.0 8.5 0486.696 4.1 1.6 11.6 6515.544 4.8 1.8 11.9 6684.881 5.1 0.0 9.4 0726.247 4.8 — — 6713.809 5.4 2.5 11.2 0738.853 4.0 — — 6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6760.778 6.0 2.2 8.6 0776.769 5.1 — — 6789.649 5.4 2.5 12.0 0778.730 5.1 — — 6799.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 —2.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 —2.0 12.0 080.743 7.2 1.6 17.4 </td <td>6461.616</td> <td>16.8</td> <td>9.2</td> <td>11.6</td> <td>0485.707</td> <td>6.2</td> <td>3.1</td> <td></td>	6461.616	16.8	9.2	11.6	0485.707	6.2	3.1	
6684.881 5.1 0.0 9.4 0726.247 4.8 — — 6713.809 5.4 2.5 11.2 0738.853 4.0 — — — 6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6760.778 6.0 2.2 8.6 0776.769 5.1 — — 6789.649 5.4 2.5 12.0 0778.730 5.1 — — 6799.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 —2.0 12.7 0803.743 7.2 1.6 17.4 6860.577 10.0 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 0835.607 7.2 — — 7075.869 4.1 5.2 10.5 <td></td> <td></td> <td>0.0</td> <td>8.5</td> <td>0486.696</td> <td>4.1</td> <td>1.6</td> <td></td>			0.0	8.5	0486.696	4.1	1.6	
6713.809 5.4 2.5 11.2 0738.833 4.0 — — 6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6780.678 6.0 2.2 8.6 0776.769 5.1 — — 6789.649 5.4 2.5 12.0 0778.730 5.1 — — 6799.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 —2.0 12.7 0803.743 7.2 1.6 17.4 6860.577 10.0 5.1 12.0 0806.706 10.0 1.6 12.7 7053.8904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — — 7075.869 4.1 5.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
6726.834 7.2 1.6 12.0 0751.826 5.1 4.1 15.8 6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6760.778 6.0 2.2 8.6 0776.769 5.1 — — 6766.694 11.8 2.5 10.5 .844 6.2 0.0 15.8 6789.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 —2.0 12.7 0803.743 7.2 1.6 17.4 6860.577 10.0 5.1: 12.0 0806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 835.607 7.2 — — — 7075.869 4.1 5.2 10.5 838.621 7.2 2.7 13.8 7097.800 7.2 1.8 <				9.4	0726.247	4.8	-	
6731.774 7.2 0.0 12.3 0769.791 4.4 0.0 13.8 6760.778 6.0 2.2 8.6 0776.769 5.1 — — 6766.694 11.8 2.5 10.5 844 6.2 0.0 15.8 6789.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 —2.0 12.7 0803.743 7.2 1.6 17.4 6860.577 10.0 5.1: 12.0 0806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 0835.607 7.2 — — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 13.8 7102.701 9.7 4				11.2	0738.853	4.0		
6760.778 6.0 2.2 8.6 0776.769 5.1 — — — 6766.694 11.8 2.5 10.5 .844 6.2 0.0 15.8 6789.649 5.4 2.5 12.0 07778.730 5.1 — — — 6799.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 —2.0 12.7 0803.743 7.2 1.6 17.4 6860.577 10.0 5.1: 12.0 0806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 835.607 7.2 — — — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — — 7075.869 4.1 5.2 10.9 1125.842 7.2 4.1 12.0								
6766.694 11.8 2.5 10.5 .844 6.2 0.0 15.8 6789.649 5.4 2.5 12.0 0778.730 5.1 — — — 6799.607 9.0 0.0 12.0 0778.730 5.1 — — — 6818.551 7.2 — 2.0 12.7: 0803.743 7.2 1.6 17.4 6860.577 10.0 5.1: 12.0 0806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 0835.607 7.2 — — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7108.834 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 7122.843 4.5 — 1.0 12.0 1134.812 6.0 1.8 12.0 7172.701 9.7 4.1 13.8 1153.706 11.6 — — 7242.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.5 7.0 1157.733 6.0 — — 7480.780 5.4 2.2 9.4 1158.786 10.9 2.0 12.0 7493.703 5.1 2.7 12.0 1168.664 6.0 — — 7499.705 14.2 2.5 10.5 16.8 664 6.0 — — 7499.705 14.2 2.5 10.5 16.8 664 6.0 — — 7499.705 14.2 2.5 10.5 16.8 664 6.0 — — 7499.705 14.2 2.5 10.5 7.51 7.2 2.5 11.2 7531.760 7.2 2.3 9.4 795 6.0 2.7 11.6 7791.876 10.0 2.5 12.0 1170.710 7.2 0.0 12.0 12.0 7836.788 7.2 0.0 15.8 1191.695 8.7 2.0 11.6 7865.819 7.2 1.4 16.7 1202.510 4.8 — — 8159.898 6.2 2.5 7.7 635 5.4 0.0 12.0 8200.730 5.6 6.6 14.9 1219.621 5.2 0.0 11.6 8271.693 17.4 1.6 12.0 1269.512 4.8 — — 8278.591 5.1 3.6 12.0 1271.527 4.2 2.5 11.6 8561.874 5.1 1.6 8.1 1487.831 8.3 0.0 14.8 8591.812 7.2 2.5 9.4 1488.855 6.0 2.3 8.5 8603.769 5.5 5.9 9.4 1599.707 4.8 — — 8630.692 6.2 2.5 9.4 1518.099 6.2 0.0 11.6 8658.639 5.1 0.0 10.5 1512.731 7.2 — — 8912.860 4.1 1.0 8.8 1521.690 4.1 — — 8926.762 — — 0.0 8.3 1564.664 5.2 1.6 8.5 8959.777 9.4 6.1 8.1 1566.603 5.1							0.0	13.8
6789.649 5.4 2.5 12.0 0778.730 5.1 — — 6799.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 —2.0 12.7: 0803.743 7.1 1.6 17.4 6860.577 10.0 5.1: 12.0 0806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 0835.607 7.2 — — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7108.834 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 7122.843 4.5 —1.0 12.0 1134.812 6.0 1.8 12.0 7172.701 9.7 <								
6799.607 9.0 0.0 12.0 0779.853 3.6 5.2 17.7 6818.551 7.2 —2.0 12.7: 0803.743 7.2 1.6 17.4 6860.577 10.0 5.1: 12.0 0806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 0835.607 7.2 — — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — — 7108.834 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 7132.843 4.5 — 2.7 — — — 7184.681 7.2 2.2 17.4 1155.766 7.2 4.1 12.0 7184.681 7.2 2.2 17.4 1155.766 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>15.8</td></t<>							0.0	15.8
6818.551 7.2 —2.0 12.7: 0803.743 7.2 1.6 17.4 6860.577 10.0 5.1: 12.0 0806.706 10.0 1.6 12.7 7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 0835.607 7.2 — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7108.834 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 7122.843 4.5 —1.0 12.0 1134.812 6.0 1.8 12.0 7172.701 9.7 4.1 13.8 1153.706 11.6 — — — 7242.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7440.7845 7.2								<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
7053.904 5.1 1.6 8.5 0817.640 5.1 0.0 15.5 7065.869 5.4 5.2 11.6 0835.607 7.2 — — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7108.834 7.2 2.7 10.9 1125.842 7.2 4.1 12.0 7122.843 4.5 —1.0 12.0 1134.812 6.0 1.8 12.0 7172.701 9.7 4.1 13.8 1155.706 7.2 — — 7184.681 7.2 2.2 17.4 1156.778 4.5 1.9 10.5 7447.845 7.2 2.5 11.6 1156.778 4.5 1.9 10.5 7480.780 5.4 2.2 9.4 1158.786 10.9 2.0 12.0 7493.703 5.1 2.								
7065.869 5.4 5.2 11.6 0835.607 7.2 — — 7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7108.834 7.2 2,7 10.9 1125.842 7.2 4.1 12.0 7122.843 4.5 —1.0 12.0 1134.812 6.0 1.8 12.0 7172.701 9.7 4.1 13.8 1153.706 11.6 — — 7184.681 7.2 2.2 17.4 1155.726 7.2 — — 7242.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.5 7.0 1157.733 6.0 — — 7480.780 5.4 2.2 9.4 1158.786 10.9 2.0 12.0 7493.703 5.1 2.7								
7075.869 4.1 5.2 10.5 0838.621 7.2 2.7 13.8 7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7108.834 7.2 2,7 10.9 1125.842 7.2 4.1 12.0 7122.843 4.5 —1.0 12.0 1134.812 6.0 1.8 12.0 7172.701 9.7 4.1 13.8 1153.706 11.6 — — — 7184.681 7.2 2.2 17.4 1155.726 7.2 —							0.0	15.5
7097.800 7.2 1.8 8.4 0932.581 — 2.7 — 7108.834 7.2 2,7 10.9 1125.842 7.2 4.1 12.0 7122.843 4.5 —1.0 12.0 1134.812 6.0 1.8 12.0 7172.701 9.7 4.1 13.8 1153.706 11.6 — — 7184.681 7.2 2.2 17.4 1155.726 7.2 — — 7242.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.5 7.0 1157.733 6.0 — — 7480.780 5.4 2.2 9.4 1158.786 10.9 2.0 12.0 7493.703 5.1 2.7 12.0 1168.664 6.0 — — 791.876 10.0 2.5 12.0 1170.710 7.2 2.5 11.2 7531.760 7.2 2.3							0.7	12.0
7108.834 7.2 2,7 10.9 1125.842 7.2 4.1 12.0 7122.843 4.5 —1.0 12.0 1134.812 6.0 1.8 12.0 7172.701 9.7 4.1 13.8 1153.706 11.6 — — 7184.681 7.2 2.2 17.4 1155.726 7.2 — — 7242.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7447.845 7.2 2.5 7.0 1157.733 6.0 — — 7480.780 5.4 2.2 9.4 1158.786 10.9 2.0 12.0 7493.703 5.1 2.7 12.0 1168.664 6.0 — — 7499.705 14.2 2.5 10.5 .751 7.2 2.5 11.6 7791.876 7.2 2.3 9.4 .795 6.0 2.7 11.6 7791.876 7.2 2.3								10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.2						12.0
7172.701 9.7 4.1 13.8 1153.706 11.6 — — 7184.681 7.2 2.2 17.4 1155.726 7.2 — — 7242.584 10.5 2.5 11.6 1156.778 4.5 1.9 10.5 7480.780 7.2 2.5 7.0 1157.733 6.0 — — 7480.780 5.4 2.2 9.4 1158.786 10.9 2.0 12.0 7493.703 5.1 2.7 12.0 1168.664 6.0 — — 7499.705 14.2 2.5 10.5 .751 7.2 2.5 11.2 7531.760 7.2 2.3 9.4 .795 6.0 2.7 11.6 7791.876 10.0 2.5 12.0 1170.710 7.2 0.0 12.0 7836.788 7.2 1.0 15.8 1191.695 8.7 2.0 11.6 7865.819 7.2 1.0		4.5						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								12.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7242.584						1.9	10.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74 47.845							<u>—</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7480.780	5.4		9.4			2.0	12.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.7	12.0	1168.664	6.0	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						7.2		11.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
7865.819 7.2 1.4 16.7 1202.510 4.8 — — 8159.898 6.2 2.5 7.7 .635 5.4 0.0 12.0 8200.730 5.6 6.6 14.9 1219.621 5.2 0.0 11.6 8271.693 17.4 1.6 12.0 1269.512 4.8 — — 8278.591 5.1 3.6 12.0 1271.527 4.2 2.5 11.6 8561.874 5.1 1.6 8.1 1487.831 8.3 0.0 14.8 8591.812 7.2 2.5 9.4 1488.855 6.0 2.3 8.5 8603.769 5.5 5.9 9.4 1509.707 4.8 — — 8630.692 6.2 2.5 9.4 1511.809 6.2 0.0 11.6 8658.639 5.1 0.0 10.5 1512.731 7.2 — — 8912.860 4.1 1.0 8.8 1521.690 4.1 — — 8926.762 —								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2.0	11.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.0	11.6
8561.874 5.1 1.6 8.1 1487.831 8.3 0.0 14.8 8591.812 7.2 2.5 9.4 1488.855 6.0 2.3 8.5 8603.769 5.5 5.9 9.4 1509.707 4.8 — — 8630.692 6.2 2.5 9.4 1511.809 6.2 0.0 11.6 8658.639 5.1 0.0 10.5 1512.731 7.2 — — 8912.860 4.1 1.0 8.8 1521.690 4.1 — — 8926.762 — 0.0 8.3 1564.664 5.2 1.6 8.5 8959.777 9.4 6.1 8.1 1566.603 5.1 — —								11.0
8591.812 7.2 2.5 9.4 1488.855 6.0 2.3 8.5 8603.769 5.5 5.9 9.4 1509.707 4.8 — — 8630.692 6.2 2.5 9.4 1511.809 6.2 0.0 11.6 8658.639 5.1 0.0 10.5 1512.731 7.2 — — 8912.860 4.1 1.0 8.8 1521.690 4.1 — — 8926.762 — 0.0 8.3 1564.664 5.2 1.6 8.5 8959.777 9.4 6.1 8.1 1566.603 5.1 — —								
8603.769 5.5 5.9 9.4 1509.707 4.8 — — 8630.692 6.2 2.5 9.4 1511.809 6.2 0.0 11.6 8658.639 5.1 0.0 10.5 1512.731 7.2 — — 8912.860 4.1 1.0 8.8 1521.690 4.1 — — 8926.762 — 0.0 8.3 1564.664 5.2 1.6 8.5 8959.777 9.4 6.1 8.1 1566.603 5.1 — —								
8630.692 6.2 2.5 9.4 1511.809 6.2 0.0 11.6 8658.639 5.1 0.0 10.5 1512.731 7.2 — — 8912.860 4.1 1.0 8.8 1521.690 4.1 — — 8926.762 — 0.0 8.3 1564.664 5.2 1.6 8.5 8959.777 9.4 6.1 8.1 1566.603 5.1 — —							2.3	6.0
8658.639 5.1 0.0 10.5 1512.731 7.2 — — 8912.860 4.1 1.0 8.8 1521.690 4.1 — — 8926.762 — 0.0 8.3 1564.664 5.2 1.6 8.5 8959.777 9.4 6.1 8.1 1566.603 5.1 — —							0.0	11.6
8912.860 4.1 1.0 8.8 1521.690 4.1 — — 8926.762 — 0.0 8.3 1564.664 5.2 1.6 8.5 8959.777 9.4 6.1 8.1 1566.603 5.1 — —							U.U	11.0
8926.762 — 0.0 8.3 1564.664 5.2 1.6 8.5 8959.777 9.4 6.1 8.1 1566.603 5.1 — —								
8959.777 9.4 6.1 8.1 1566.603 5.1 — —							1.6	8.5
AND		9.4					-	
	8985.660	4.1	1.0	8.8	1567.585	5.1		-

JD hel	TT	357	№ 4	JD hel	TT	357	№ 4
242	<u> </u>		<u> </u>	242			
1567.673	5.2	2.5	11.2	9528.407	10.0		
1568.647	6.2	2.7	8.5	.460	7.2	5.1	8.2
1576.651	8.3	3.1	9.4	9587.351	5.1	_	
1663.508	7.2			9591.392	6.0		
1865.820	9.4	3.6	9.4	.423	9.4	3.1	16 5
1868.758	5.1	-	-	9805.644	7.2 7.2	2.7	16.5
1871.758	$\frac{9.4}{6.0}$			9826.531 9848.653	7.2	2.5	11.2
1872.767 2191.859	5.1			9865.536	6.2	2.5	12.0
2591.846	8.3	3.1	11.6	9902.438	7.2	_	<u></u>
3326.807	9.4	6.1	11.2	9924.468	7.2	8.9	9.4
3351.746	6.0	2.3	9.4	243			
3386.663	10.2	1.0	7.5	0017.419	5.2	4.1	12.0
3408.621	5.1	2.3	11.2	0054.270	8.3	0.0	12.0
3699.824	5.1	2.0	6.6	0055.293	6.2	5.0	7.7
3 768.728	6.3	3.1	9.4	0168.650	6.0	6.3	12.3
3785.606	5.1	0.0	10.3	0193.503 0198.660	7.2 10.5		_
3789.625 3798.579	4.8 9.4	2.5 5.1	13.8 12.0	0207.639	10.0	2.0	12.0
3813.542	7.2	5.2	12.7	0231.614	9.4	1.6	12.7
3821.535	8.3	0.0	12.0	0259.502	7.2		
4121.606	7.2	0.0	12.0	0262.439	5.2	2.3	8.5
7981.639	12.4	5.1	8.5	0306.518	9.4	5.0	12.7
7988.607	6.0		 .	0313.339	13.6	2.0	11.2
8024.618	9.4	2.0	10.5	0326.316	14.4	2.1	9.4
8035.611	9.4	5.1	10.5	.373 0549.658	17.7 7.2	3.1 3.1	9.4 11.6
8045.613	6.0	5.1	12.0	0553.610	5.4	3.1	11.0 —
8047.531 .592	5.5 8.6	1.6	7.5	0754.358	10.0	0.0	9.4
8062.563	13.5	1.0		0791.262	7.2	0.0	10.9
8072.505	6.0	-	_	0799.255	7.2	2.0	11.6
.564	4.8	1.6	6.9	0915.610	6.2		
8118.337	4.8		-	0962.499	9.4	2.5	12.0
8121.393	9.7	1.6	7.5	1166.258	11.5	0.0	16.7 11.2
8139.421	6.2 7.2	2.0	11.6	1270.629 1290.609	9.0 6.2	0.0	11.4
8143.291 8173.332	5.1	2.7	11.2	1292.659	9.0	9.2	12.7
8210.279	9.4	6.8	9.4	1295.546	4.1	_	
8229.266	7.2	3.1	10.5	1304.557	9.0		
8374.544	3.6	_	_	1319.545	6.2	1.9	7.5
8399.608	5.9	2.5	12.7	1325.550	5.6	0.0	12.0
8409.619	4.5	0.0	7.7	1330.494	15.7	0.0	10.5
8430.502	7.2	1.4	<u></u>	1402.497 1403.504	7.2	-1.0	13.8
.560	6.2	1.4	9.4	1458.294	17.0		10.0
8456.570 8486.338	5.4 4.4	2.5	8.5	.347	11.1	1.6	12.0
.400	7.2		10.3	1652.659	7.2		
8518.292	7.2		11.2	1710.433	6.0	·	
8580.280	7.2		12.0	.561	9.6		7.7
8584.267	10.0		17.4:		6.2		
8604.264	6.2		10.5	1761.454	5.5 8.8		8.2
9168.562	7.2 5.2		12.0	.518 1796.424	9.6		7.7
9389.207	0.2	1.0	12.0	1100.121	٠.٠		- • • •

JD hel	TT	357	№ 4	JD hel	TT	3 57	№ 4
243 1859.287 1881.269 2000.655 2005.689 2010.582 2013.655 2035.609 2052.562 2060.551 2119.385 2142.392 2175.362 2390.659	6.0 9.6 10.5 4.7 5.1 7.2 8.3 9.4 7.2 5.4 7.2 9.4 7.2	3.5 1.0 2.0 2.5 	12.7 13.8 10.5 12.7 — 13.8 9.4 12.0 9.4 10.9 9.4 8.5	243 2746.603 2775.570 2804.558 2821.438 2851.511 3088.652 3133.636 3178.453 3185.520 3293.358 3656.295 3970.381 3977.280	11.1 5.6 9.0 7.2 8.6 6.3 4.5 5.8 9.4 7.2 9.0 5.2 7.2	357 3.1 1.6 1.4 1.0 0.0 2.0 	9.4 9.4 9.4 10.5 11.6 11.6 8.1 —
2418.589 2422.568 2450.440 .504 2469.445 2563.358 2564.296	4.8 9.2 5.1 7.2 6.0 10.0 7.2	-1.0 1.6 3.4 1.0 2.5	10.5 9.4 14.9 9.4 12.0	4035.293 4366.299 4397.292 .353 - 4684.391 4685.328 4689.381	6.2 17.9 8.6 9.4 5.2 10.5 10.0	2.0 1.8 3.1 4.1 1.6	12.0 12.7 8.5 10.9 11.6 8.5

Таблица 59. Гарвардские наблюдения звезд созвездия Horologium (серия BI)

TT	357	JD hel	TT	357
		243		
8.9	7.7		62	
7.2				9.3
				2.7
				9.2
6.4				3.1
10.9				2.5
10.0				6.1
				2.7
5.6				3.1
7.2				0.0
				2.0
	2.7			4.1
				3.1
	2.7			1.8
				4.1
				0.0
				4.1
				2.7
	77			
				2.3
	_			2.0
	3.1			0.0
	8.9 7.2 9.6 8.5 6.4 10.9 10.0 5.1	8.9 7.7 7.2 2.3 9.6 3.1 8.5 3.1 6.4 2.7 10.9 2.7 10.0 2.3 5.1 5.1 5.6 2.3 7.2 — 7.2 — 7.2 — 7.2 — 15.7 2.7 6.2 2.7 8.5 7.1 18.8 3.1 18.0 1.4 8.9 5.6 7.7 5.6 — 5.6 —	8.9 7.7 1297.578 7.2 2.3 .603 9.6 3.1 1321.547 8.5 3.1 .613 6.4 2.7 1323.483 10.9 2.7 1325.515 10.0 2.3 1326.578 5.1 5.1 1327.483 5.6 2.3 .541 7.2 — .616 7.2 — .1328.519 15.7 2.7 .552 6.2 — .585 5.2 2.7 1330.645 8.5 7.1 1405.482 18.8 3.1 1407.583 18.0 1.4 1415.290 8.9 — .1436.314 5.6 7.7 1468.377 5.6 — .1652.577 5.6 — .615	8.9 7.7 1297.578 6.2 7.2 2.3

прооблистие	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
JD hel	TT	357	JD hel	TT	357
243			243		
243 1674.644	11.4	7.1	2040.640	5.1	1.6
1677.513	7.2	7.1	2056.478	5.1	2.3
.578	5.1	2.7	2058.511	6.2	3.1
1678.546	7.2	2.0	2059.576	10.5	2.0
1682.613	13.6:	1.4	2069.562	4.5	0.0
1683.514	7.2	2.7	2084.399	5.1	
.581	6.3	0.0	2109.339	5.1	
1701.563	4.1	9.6	.372	8.5	1.0
1701.505	5.2	6.1	2124.383	6.0	2.7
.588	5.1		2136.258	8.2	
1704.546	7.2	0.0	2143.294	7.2	0.0
1712.492	10.5	1.4	2206.312	5.1	0.0
1713.530	6.0	2.5	2359.639	5.1	
1729.495	17.4	2.0	2383.579	5.1	
1759.340	5.1	1.6	2389.625	5.2	2.3
1845.313	7.2	— 1.0	2395,609	7.2	4.1
1999.630	4.3		2423.586	6.0	2.0
2000.662	7.2	-1.0	2448,469	10.5	2.3
2005.637	4.3	2.0	2469.372	7.2	1.4
2011.653	6.3	2.0	.406	9.0	3.1
2030.571	6.2		.439	10.0	0.0
.604	7.2	2.0	472	7.2	1.8
2033.636	10.5	2.7	2592.271	4.3	1.4
2035.602	7.2	1.4	2593.336	5.1	2.7
2037.525	7.2	2.7	-		
2037.323	1.2				

КЗП 357-S 4822

После отыскания предварительного значения периода были построены средние сезонные кривые блеска и определены моменты минимумов:

Min JD	Ε	$O \leftarrow C_1$	O - C ₂
2414869.88	10000	0.00	(-0.35)
6461.62	— 8077	0.00	(28)
8500.34	 5614	+0.01	(18)
25500.39	+ 2843	(-0.12)	0.00
8500.82	÷ 6468	(-0.23)	+ .01
31320.78	÷ 9875	(-0.37)	.01

Остатки О — С, вычислены относительно формулы

Min JD =
$$2423147.25 + 0.827737 \cdot E$$
; $P^{-1} = 1.2081132$.

Для определения остатков О — C_2 использована формула

Min JD = $2423147.24 + 0.827701 \cdot E$; $P^{-1} = 1.20816575$. Период звезды изменился скачком около даты JD 2423150. Как видно из табл. 60 и рис. 36, данная звезда относится к типу β Лиры.

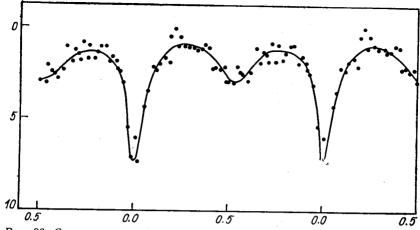


Рис. 36. Средняя кривая блеска КЗП 357.

Таблица 60. Средняя кривая блеска звезды КЗП 357

Фаза	s	n	Фаза	ز	n	Фаза	s	п
0P.005 .024 .054 .074 .098 .115 .131 .156 .176 .194 .215 .231 .247 .267 .292 .320 .338 .358	6.1 7.4 4.4 3.6 2.3 2.4 2.0 1.8 2.1 0.6 0.2 1.2 0.6 1.1 1.2 1.3	11 10 11 10 10 10 10 10 11 10 10 10 10 1	0P.376 .398 .419 .434 .462 .476 .491 .506 .530 .546 .566 .578 .598 .618 .646 .671 .684	1.1 1.2 2.3 2.3 2.4 2.3 3.0 3.0 3.1 2.2 2.5 2.6 2.9 2.5 1.2 2.0 1.4	10 10 10 10 10 10 10 10 10 11 10 10 10 1	0 ^P .716 .735 .751 .763 .786 .807 .830 .846 .869 .887 .905 .913 .922 .944	1.9 1.0 1.9 1.1 1.9 1.5 1.1 2.0 1.7 2.0 2.4 2.5 3.2 5.5 7.2	10 10 10 10 10 10 10 10 10 10 10 10 10 1

Звезда № 11

После отыскания предварительного значения периода мы построили средние сезонные кривые блеска. Из них были определены моменты минимумов блеска. Период оказался переменным. Моменты минимумов можно представить двумя формулами с разрывом около JD=2430857, $E_1=5890$ согласно следующей сводке:

Остатки вычислены относительно формул:

Min hel JD =
$$2426659.385 + 0.712704 \cdot E_1$$
; (A)
Min hel JD = $2426659.380 + 0.7126943 \cdot E_1$;

$$P^{-1} = 1.403126136; (B)$$

Min hel JD =
$$2430585.587 + 0.712760 \cdot E_2$$
;
 $P^{-1} = 1.4029968$. (C)

При построении средней кривой блеска выяснилось, что наблюдения, сделанные в интервале 2430547—2430677, лучше согласуются

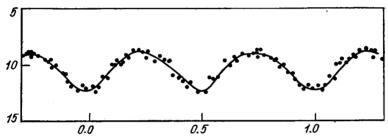


Рис. 37. Средняя кривая блеска звезды № 11 Horologii.

с формулой (С). Средняя кривая блеска приведена в табл. 61 и изображена на рис. 37. Наблюдения представлены в табл. 55 и 62. Тип звезды — W UMa.

Таблица 61. Средняя кривая блеска звезды № 11

Фаза	s	n	Фаза	s .	n	Фаза	S	n
0 ^p .016	13.8	5	0р.199	7.5	5	0 ^p .425	12.8	55555555555555
.030	14.6	5	.226	7.2	5	.437	14.0	5
.046	13.7	5 5 5	.242	7.6	5	.456	13.3	5
.062	12.2		.255	8.8	5	.4 82	14.7	5
.085	12.3	5	.267	7.6	5	.519	14.7	5
.103	9.8	5	.298	9.2	5	.538	12.3	5
.115	9.7	5	.323	8.4	5	.550	12.7	5
.125	9.1	5	339	9.1	5	.571	12.2	5
.143	9.7	5 5 5	.354	9.6	5	.603	9.1	5
.154	9.2	5 5	.363	9.4	5	.626	10.1	5
.165	8.0	5	.377	12.0	5	.642	8.8	5
.176	8.3	5	.404	12.4	4	.655	9.4	5
.176	8.3	5	.404	12.4	4	.655	9.4	

пабл. б	51						
s	n	Фаза	s	n	Фаза	s	п
3.0 8.3 3.1 7.8 7.6 3.5	5 4 5 5 4 5 5	0 ^p .778 .809 .822 .832 .843 .859	8.3 9.0 9.3 9.0 10.5 10.0	5 5 5 5 4 5	0º .900 .911 .933 .950 .971 .989	11.7 12.9 13.8 14.5 13.7 14.3	5 5 5 5 5 5
ца 62	. Гарв	ардские н	аблюден	ия звезд	созвездия	Horologium	1
el	s	JD	hel	S	JD hel	s	
	ерия А		· ·			·	•
80 39 311 319 60 70 992 980 660 553 336 336 339 339 341	11.5 11.5 9.4 11.5 13.5 11.5 4.25 2.0: 0.0: -1.0 5.8: 9.4 0.0: 13.5 10.4	0262 0306 0313 0326 0754 1292 1325 1330 1710 1761 1796 1859 2000 2005 2013 2035 2052 2060	.439 .518 .339 .373 .358 .659 .550 .494 .561 .518 .424 .287 .655 .689 .609	11.5 10.4 0.0 1.2 2.1 11.5 9.6 10.4 11.5 14.5 14.5 14.5 10.4 0.0 3.1 3.1 3.1 8.4	2142.39 2175.36 2390.65 2418.58 2422.56 2450.56 2469.44 2804.55 2851.51 3088.65 3133.63 3178.45 4035.29 4366.29	2 7.3 2 13.5 9 13.5 9 10.5 10.4 8 7.7 5 11.5 8 14.5 1 0.0 0.0 14.5 2.0: 9.6 3 9.4 9 16.3	
	Серия						
320 388	10.8 10.8	9313		7.4	0145.62		
№ 11.	Серия						
620 388 288	9.7 9.7 7.8	9442 243.	.628	8.2 7.4	0647.43		
	8.0 3.0 3.3 3.1 7.8 7.6 3.5 7.7 14 a 62 11 119 19 60 60 60 60 60 60 60 60 60 60	8	8	S	S n Фаза s n 3.0 5 0P.778 8.3 5 3.1 5 .822 9.3 5 7.8 5 .832 9.0 5 7.6 4 .843 10.5 5 3.5 5 .859 10.0 4 7.7 5 .884 11.5 5 ца 62. Гарвардские наблюдения звезд везд везд JD hel s 243 39 11.5 0306.518 10.4 39 11.5 0313.339 0.0 11.5 39 11.5 0313.339 0.0 11.5 40 13.5 1292.659 11.5 11.5 60 13.5 1292.659 11.5 11.5 70 11.5 1325.550 9.6 92 4.2 1330.494 10.4 80 12.5 1710.561 11.5 53 0.0 1796.424 14.5 40 2.0 1761.518 11.5 53 0.0 1796.424 14.5 419 5.8 2005.689 0.0 419 5.8 2005.689 <td>s n Фаза s n Фаза 3.0 5 0Р.778 8.3 5 0Р.900 3.3 4 .809 9.0 5 .911 3.1 5 .822 9.0 5 .950 7.8 5 .832 9.0 5 .971 7.6 4 .843 10.5 5 .971 8.5 5 .859 10.0 4 .989 7.7 5 .884 11.5 5 80 11.5 0262.439 11.5 2119.38 80 11.5 0313.339 0.0 2175.36 11 9.4 0326.373 1.2 2390.65 11 9.4 0326.373 1.2 2390.65 <td>S n Фаза s n Фаза s 3.0 5 0°,778 8.3 5 0°,900 11.7 3.3 4 .809 9.0 5 .911 12.9 3.1 5 .822 9.3 5 .933 13.8 7.8 5 .832 9.0 5 .950 14.5 7.6 4 .843 10.5 5 .971 13.7 8.5 5 .859 10.0 4 .989 14.3 7.7 5 .884 11.5 5 .971 13.7 8.0 11.5 .0262.439 11.5 2119.385 10.4 80 11.5 .0313.339 0.0 2175.362 13.5 11 9.4 .0326.373 1.2 2390.659 13.5 13 11.5 .0313.339 0.0 2175.362 13.5 14 11.5 .0265.9 11.5<</td></td>	s n Фаза s n Фаза 3.0 5 0Р.778 8.3 5 0Р.900 3.3 4 .809 9.0 5 .911 3.1 5 .822 9.0 5 .950 7.8 5 .832 9.0 5 .971 7.6 4 .843 10.5 5 .971 8.5 5 .859 10.0 4 .989 7.7 5 .884 11.5 5 80 11.5 0262.439 11.5 2119.38 80 11.5 0313.339 0.0 2175.36 11 9.4 0326.373 1.2 2390.65 11 9.4 0326.373 1.2 2390.65 <td>S n Фаза s n Фаза s 3.0 5 0°,778 8.3 5 0°,900 11.7 3.3 4 .809 9.0 5 .911 12.9 3.1 5 .822 9.3 5 .933 13.8 7.8 5 .832 9.0 5 .950 14.5 7.6 4 .843 10.5 5 .971 13.7 8.5 5 .859 10.0 4 .989 14.3 7.7 5 .884 11.5 5 .971 13.7 8.0 11.5 .0262.439 11.5 2119.385 10.4 80 11.5 .0313.339 0.0 2175.362 13.5 11 9.4 .0326.373 1.2 2390.659 13.5 13 11.5 .0313.339 0.0 2175.362 13.5 14 11.5 .0265.9 11.5<</td>	S n Фаза s n Фаза s 3.0 5 0°,778 8.3 5 0°,900 11.7 3.3 4 .809 9.0 5 .911 12.9 3.1 5 .822 9.3 5 .933 13.8 7.8 5 .832 9.0 5 .950 14.5 7.6 4 .843 10.5 5 .971 13.7 8.5 5 .859 10.0 4 .989 14.3 7.7 5 .884 11.5 5 .971 13.7 8.0 11.5 .0262.439 11.5 2119.385 10.4 80 11.5 .0313.339 0.0 2175.362 13.5 11 9.4 .0326.373 1.2 2390.659 13.5 13 11.5 .0313.339 0.0 2175.362 13.5 14 11.5 .0265.9 11.5<

ЗВЕЗДЫ ТИПА RR ЛИРЫ

Звезда № 2

После отыскания приближенной формулы были построены средние сезонные кривые блеска, из которых определены моменты максимумов:

Max hel JD	E	0-C
2424800.478	0	+0.011
5600.596	1417	006
7000.414	3896	002
8500.730	6553	 .010
30200.401	9563	+.008
0620.502	10307	004
1050.777	11069	006
1370.384	11635	002
1800.661	12397	002
2280.642	13247	+.010
3500.316	15407	+.000

По ним найдены окончательные элементы:

Мах hel JD = $2424800.467 + 0.56466857 \cdot E$; $P^{-1} = 1.77095035$, относительно которых вычислены остатки О—С и построена средняя кривая по снимкам серии МF (табл. 63, рис. 38 — кривая *1*). Снимки серий АМ, АХ и RB явились основой для построения второй

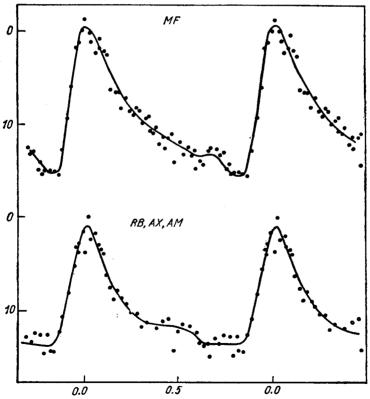


Рис. 38. Средняя кривая блеска звезды № 2 Horologii.

средней кривой блеска (табл. 64, рис. 38 — кривая 2). Наблюдения указаны в табл. 55—57, 62.

Таблица 63. Средняя кривая блеска звезды № 2 (серия МГ)

•	•					<u> </u>	<u> </u>	
Фаза	s	n	Фаза	s	n	Фаза	s	n
0P.007 .031 .041 .061 .079 .086 .102 .124 .144 .162 .178 .198 .220 .245 .261 .275 .291	-1.2 +0.1 0.9 2.2 1.7 0.5 2.0 2.5 6.2 6.4 8.0 7.1 8.5 8.9 8.2 8.4 9.7 9.4	5655555555555555555	0P.344 .355 .368 .383 .403 .423 .431 .449 .463 .479 .500 .536 .556 .567 .584 .597 .616 .626	9.1 10.5 10.7 10.2 12.1 11.3 12.4 11.3 11.0 14.2 11.8 13.1 12.4 13.4 12.6 14.0 14.2 12.9	66655555555555555555	0P.672 .704 .716 .732 .755 .768 .779 .794 .822 .841 .860 .885 .912 .938 .958 .971	12.4 12.5 13.2 12.9 14.8 14.1 15.3 15.1 15.2 15.4 12.8 9.2 5.9 1.7 1.7	555565555555554

Таблица 64. Средняя кривая блеска звезды № 2 (серии AM, AX и RB)

1 4 0 11 11 11	. O., Or	- Дили				(copius rain	,	·-,
Фаза	s	n	Фаза	s	n	Фаза	s	n
0 ^p .009	3.7	5 5 5	0 ^p .309	11.8 11.2	5 5	0 ^p .728 .751	13.4 12.5	5555556555
.026 .042	$\substack{0.0\\2.2}$	5 5	.391	11.7	5	.774	12.6	5
.062	1.8	6 5	.426	11.0	5 5	.797	14.6	5
.079	3.0	5	.456	10.8	5 5 5	.813	12.6	5
.092	3.4	6	.4 86	14.1	5	.829	14.3	5
.105	3.9	5	.502	12.1		.848	14.4	6
.127	6.1	5	.525	11.5	5	.875	12.4	5
.146	7.5	5 5 5	.5 66	11.6	5	.898	10.6	5
.170	8.6	5	.597	12.2	5 5 5	.927	8.0	5
.189	7.8	6	.621	13.4	5	.954	5.3	6 5
.210	8.8	6 5 5	.638	13.6	5	.967	3.3	5
.232	9.3	5	.658	13.5	5	.974	3.8	4
.256	10.2	5	.682	14.7	5 5	.984	2.8	4
.289	10.3	5	.700	12.9	5	.997	1.5	3

Звезда № 3

После отыскания предварительной формулы построены сезонные кривые блеска, из которых определены моменты максимума:

Max hel JD	E	O - A	$O \hookrightarrow B$
2416826.424	0	+0.007	_
8036.548	1880	.006	-
21302.633	6954	 .004	
4722,565	12267	+ .003	-0.006

Остатки О - А вычислены относительно формулы

Мах hel JD = $2416826.417 + 0.6436900 \cdot E$; $P^{-1} = 1.55354286$, которая удовлетворяет наблюдениям до E = 13000, когда произошло скачкообразное изменение периода. После этого справедлива формула

Max hel JD = 2424722.571 + 0.6436812 (*E* — 12267); $P^{-1} = 1.5535641$, по которой вычислены остатки O — B.

Построены две средние кривые блеска: по снимкам серии МF (табл. 65, рис. 39 — кривая *I*) и по снимкам серий AM, AX и RB (табл. 66, рис. 39 — кривая *2*). Наблюдения приведены в табл. 55—57, 67).

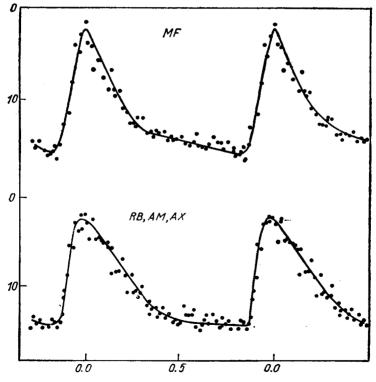


Рис. 39. Средняя кривая блеска звезды № 3 Horologii.

Таблица 65. Средняя кривая изменения блеска звезды № 3 (серия МГ)

Фаза	s	п	Фаза	s	n	Фаза	s	n
0P.010 .029 .049 .067 .094 .124 .135 .145 .156 .173 .193	3.8 4.1 6.5 5.7 7.6 8.8 6.8 8.9 9.4 9.0 10.7 11.2	555554555555555555555555555555555555555	0P.354 .371 .387 .412 .437 .452 .468 .483 .505 .528 .555	13.9 13.3 13.5 13.3 14.1 13.9 14.1 14.0 13.8 14.4 14.7	5 5 5 5 5 5 5 5 5 5 6	0P.714 .726 .748 .780 .796 .808 .820 .833 .845 .858	14.4 15.1 14.4 15.9 15.8 15.5 15.0 16.3 14.7 12.6 11.3	555555555555555555555555555555555555555
.233 .247 .260 .276 .299 .328	12.3 12.3 12.5 11.8 11.9 13.4 13.4	55556555	.576 .587 .598 .615 .629 .654 .679	13.4 14.8 14.8 15.0 14.6 14.0	5 4 5 5 5 5 5	.925 .944 .960 .976	8.1 4.0 4.9 2.9 1.6	5 5 6 5 4

Таблица 66. Средняя кривая изменения блеска звезды № 3 (серии АМ, АХ и RB)

Фаза	s	n	Фаза	s	n	Фаза	s	n
0°.007	3.1	555556565655556665555555	0 ^p .347	12.7	5 5	0°.693	13.5	56556555555555565555556
.019	5.0	þ	.353	12.4	þ	.712	14.2	6
.033 .054	$\frac{2.8}{4.9}$	õ	.371 .387	$\frac{12.2}{13.1}$	5	.725	13.2	þ
.069	4.7	5	.398	12.8	ິວ	.741	13.8	D C
.086	5.0	5 6	.412	12.0	5 5 5	.758 .772	13.6 14.4	5
.095	5.2	5	.427	13.2	Š	.806	14.3	5
.108	5.4	6	.445	12.8		.829	13.5	5
.117	5.8	5	.463	13.7	6 5 6	.840	13.7	5
.129	5.9	6	.480	13.5	6	.854	14.3	5
.141	8.5	5	.495	14.0	5	.864	13.8	5
.162	8.3	5	.503	13.8	5	.873	13.0	5
.175	8.2	5	.520	11.9	5 5 5	.882	11.2	5
.199	7.0	5	.536	12.9	5	.891	10.3	5
.215	8.8	6	.545	12.9	5	.905	8.8	6
.229	10.6	6	.561	12.8	5	.919	5.5	5
.248	8.6	6	.575	12.4	5	.928	5.9	5
.256	10.5	5	.589	14.1	5	.943	3.1	5
.263	10.4	5	.607	14.5	6	.961	4.0	5
.280	10.9	5	.615	13.9	5 5	.971	3.9	5
.291	10.6	5	.626	13.4	5	.979	2.3	5
.306	9.9	5	.641	12.8	6	.992	2.4	6
.328	12.0	5	.652	13.7	5 5			
.341	11.5	5	.674	12.8	5			

Таблица 67. Гарвардские наблюдения звезд № 3 и № 13 созвездия Horologium (серия АМ)

` <u></u>		_ 			
JD hel	№ 3	№ 13	JD hel	№ 3	№ 13
241			242		
6684.881	5.6		8062.563	6 .0	-
6713.809	4.8		8072.564	13.0	6.5
6726.834	11.0		8121.393	6.0	
6731.774	1.8		8139.421	7.1	7.6
6760.778	1.8		8173.332	0.0	
6766.694	9.0	_	8210.279	13.6	7.6
6789.649	(12.0	-	8229.266	10.0	15.8
6799.607	$(12.0 \\ 4.0$		8374.544	12.0	13.7
6860.577 7053.904	9.0		8409.619 8430.502	$\frac{3.2}{12.9}$	10.1
7065.869	0.0		.560	14.4	14.3
7075.869	12.0	_	8456.570	2.7	15.8
7097.800	13.0	=	8486.338	7.0	6.1 5.9
7108.834	12.0		.400	10.0	6.9
7122.843	12.0		8518.292	9.7	13.2
7172.701	4.8	_	8580.280	7.2	8.4
7184.681	9.0	6.5	8584.267	4.8	6.9
7447.845	11.0		8604.264		7.6
7 480.780	12.9	8.4	9168.562	4.8	15.8
7499.705	3.0		9389.207	6.0	
7791.876	11.0		9528.407	6.0	_
7836.788	12.0		.460	6.2	7.6
8200.730	2.0		9805.644	9.0	15.8
8278.591	5.3		9848.653	13.0	14.1
85 61.874	6.5		9865.536	6.4	6.9
8603.769	7.2		9902.438	8.0	_
8630.692	4.8	_	243		
242			0017.419	11.0	13.2
0738.853	8.0		0054.270	6.2	7.3
0769.791	6.0	_	0055.293	11.8	15.5
0803.743	5.3		0168.650	14.1	16.0
0806.706	10.0	_	0193.503	10.0	~ ~
0817.640 1125.842	13.0 8.0	*	0198.660 0207.639	13.0	6.5
1153.706	11.0	-	0207.639	13.7 14.9	$15.8 \\ 15.2$
1170.710	4.0		0259.502	2.3	14.4
1191.695	11.0	_	0262.439	12.9	13.7
1865.820	6.2		0306.518	0.0	11.6
3326.807	11.0	7.5	0313.339	14.1	11.3
3386.663	14.0	_	0326.316	13.0	
3699.824	3.6		.373	14.1	10.5
3785.606	13.0		0549.658	10.0	
3 789.625	13.0		0 553.610	13.0	
3 798.579	14.0		0754.358	14.7	11.3
3 813.542	15.0	· 🛶	0791.262	4.4	6.9
3821.535	8.0		0799.255	10.0	7.6
4121.606	12.9	11,3	0915.610	13.0	
7981.639	13.6	13.2	0962.499	7.0	16.7
7988.607	0.0		1166.258	9.9	14.1
8024.618	0.0	15.8	1270.629	15.5	8.4
8035.611	-1.0	14.1	1290.609	13.0	6.7
8045.613	10.0	17.9	1292.659	6.2	8.4

JD hel	№ 3	№ 13	JD hel	№ 3	№ 13
243 1295.546 1304.557 1319.545 1325.550 1330.494 1402.497 1458.294 .347 1652.659 1710.433 .561 1713.417 1761.454 .518 1796.424 1859.287 1881.269 2000.655 2005.689 2010.582 2013.655 2035.609 2052.562 2060.551	No 3 13.0 10.0 16.6 7.0 15.5 13.0 8.0 14.0 11.0 3.6 12.0 13.7 15.8 11.0 14.7 2.4 14.1 13.4 12.3 8.0 15.5 6.2	№ 13	243 2390.659 2418.589 2422.568 2450.440 .568 2469.445 2563.358 2746.603 2775.570 2804.558 2851.511 3088.652 3133.636 3178.453 3185.520 3293.358 3656.295 3977.280 4035.293 4366.299 4397.292 4397.292 4384.391	No 3 14.7 10.9 13.7 14.1 6.2 14.7 8.0 14.1 4.4 14.4 6.2 8.0 11.2 5.3 13.0 14.0 8.0 5.6 12.0 7.2 8.0 7.2 8.0 10.9	Nº 13 11.6 16.2 14.3 16.8 8.4 16.7 13.8 6.1 15.8 16.0 7.4 12.2 16.5 11.3 8.4 7.9 14.1 16.7 11.0 6.9 6.9 6.9
2119.385 2142.392 2175.362	12.8 7.2 13.7	15.8 15.8 13.7	4685.328 4689.320 .381	13.4 2.3 4.4	6.9 8.4 6.9

Звезда № 5

Видна на снимках серии MF. После отыскания приближенного значения периода были построены средние сезонные кривые блеска и из них определены моменты максимумов:

Остатки О — С вычислены относительно формулы

Max hel JD =
$$2426566.625 + 0.6496638 \cdot E$$
; $P^{-1} = 1.53925769$,

которая использована как основание для построения средней кривой блеска (табл. 68, рис. 40). Наблюдения приведены в табл. 55.

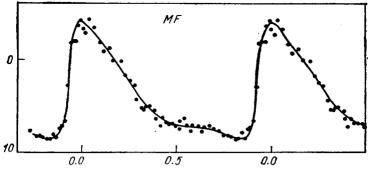


Рис. 40. Кривая блеска звезды № 5 Horologii.

Таблица 68. Средняя кривая блеска звезды № 5

Фаза	s	n	Фаза	s	n	Фаза	s	n
0P.004 .018 .035 .060 .099 .117 .141 .167 .208 .230 .256 .276 .299 .319 .323 .340 .359	-3.3 -2.8 -4.3 -3.3 -1.7 -0.8 -1.1 0.1 0.1 1.8 2.4 2.7 4.4 5.3 5.3 5.1 5.1	55555555555555555555555555555555555555	0P.393 .412 .426 .441 .461 .485 .497 .510 .520 .540 .558 .576 .587 .618 .631 .649 .675	6.4 7.1 6.4 6.7 6.9 6.9 7.2 7.6 6.6 6.3 7.1 7.7 7.0 7.2 7.9 7.3 7.6	555555555555555555555555555555555555555	0P.720 .751 .773 .788 .814 .827 .845 .862 .880 .891 .905 .926 .943 .959 .965 .982	7.7 8.2 8.2 8.4 8.5 8.5 8.0 8.4 7.5 7.3 6.7 2.9 —1.8 —2.0 —2.0 —3.8 —4.2	5555555555555554

Звезда № 10

Из наблюдений, проведенных на протяжении одной ночи, видно, что эта звезда изменяет блеск с небольшой амплитудой и кратность ее периода близка к 1.02 суток. Однако долгое время автору не удавалось определить ее период. В. Д. Мотрич, исходя из заданных автором трех возможных значений периода звезды — 0,26; 0,34 и 0,52 суток и используя программу X-5а для ЭВМ «Наири», обработал несколько коротких рядов из общего длительного ряда наблюдений автора и нашел, что лучше всего подходит период, равный 0,33813. Используя это значение, автор начал ручную обработку наблюдений и сразу же убедился в сильной изменяемости периода звезды, что не удивительно у объектов типа RR_c.

Построены сезонные кривые блеска и из них получены достаточно уверенные моменты максимумов:

Значения О — С₁ вычислены относительно формулы

Max hel JD =
$$2431062.502 + 0.338188 \cdot E$$
,

а О — С2 определены по формуле

Max hel JD =
$$2431062.505 + 0.3381547 \cdot E$$
; $P^{-1} = 2.95722638$,

которая не представляет первые три момента. Перерыв в наблюдениях не позволил установить правильный счет эпох и выяснить, как изменялся период на всем интервале, покрытом наблюдениями.

Таблица 69. Средняя кривая блеска звезды № 10 (старые наблюдения)

Фаза	s	n	Фаза	s	n	Фаза	Ç	n
0 ^p .039	6.0	3	0 ^p .411	11.8	6	0 ^p .815	10.5	3
.110	7.1	5	.492	11.5	5	.877	7.2	3
.239	7.4	4	.620	12.1	5	.915	6.4	3
.294	9.8	2	.688	12.4	4	.986	6.0	2

Таблица 70. Средняя кривая блеска звезды №10 (новые наблюдения)

Фаза	s	n	Фаза	s	n	Фаза	s	n
0P.004	5.7	10	0P.412	10.9	10	0 ^p .735	11.2	10
.068 .112	6.0 5.9	10 10	.446 .483	11.6 10.0	10 10	.763 .796	10.8 9.8	10 9
.141	7.4	10	.530	12.1	10	.837	8.0	1Ŏ
.193	7.8	10	.565	11.2	10	.887	6.9	7
.264	7.8	10	.608	12.5	9	.921	6.6	7
.320 .364	8.9 9.6	10 10	.644 .688	12.0 11.8	10 11	.952	6.4	9

Фазы наблюдений, выполненных после даты 2430045, вычислены относительно последней формулы. Фазы более ранних наблюдений вычислены с помощью формулы

Max hel JD = $2426679.425 + 0.338188 \cdot E$; $P^{-1} = 2.95693517$.

Полученная по ранним наблюдениям средняя кривая изменения блеска приведена в табл. 69 и изображена в верхней части рис. 41. Кривая блеска, полученная по наблюдениям, даты которых больше, чем 2430404, представлена в табл. 70 и в нижней части рис. 41. В средней части этого рисунка показаны отдельные точки, представляющие немногочисленные наблюдения, выполненные в интервале 2430045—2430207. Максимум блеска наступал раньше эфемеридного; это еще больше осложняет решение вопроса об изменяемости периода.

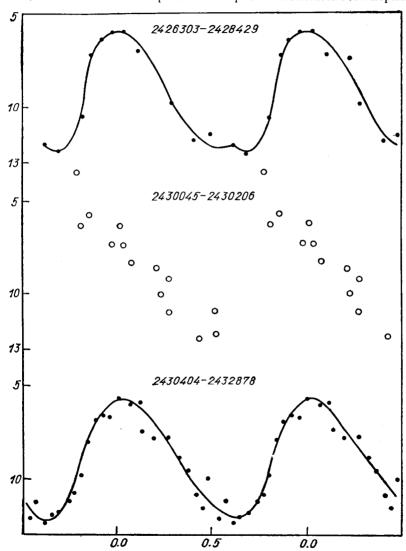


Рис. 41. Средние кривые изменения блеска звезды № 10 Horologii.

Звезда № 13

При обработке наблюдений возникло сомнение в том, каков период этой звезды: 0,66215 или 0,39793? Мы отдали предпочтение первому из них и после построения сезонных средних кривых блеска получили формулу

Max hel JD = $2430200.634 + 0.6621484 \cdot E$; $P^{-1} = 1.51023547$,

представляющую определенные нами моменты максимумов:

Max hel JD	E	O — C	Max hel JD	E	0-0
2424752.477 5897.348 6637.611 7052.789 7770.537 8660.479 9402.723 9911.247	6499 5381 4754 3670 2326 1205	0.000 + .016 002 + .008 012 + .002 022 028	1027.652	+714 $+1249$ $+1726$ $+2353$	005 001 + .013

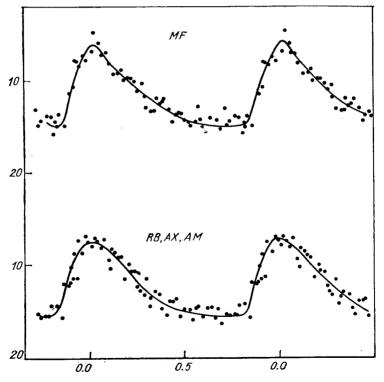


Рис. 42. Средние кривые изменения блеска звезды № 13 Horologii.

С помощью этой формулы построены две средние кривые блескат по снимкам серии МF (табл. 71, рис. 42 — кривая *I*) и серий АМ, АХ и RB (табл. 72, рис. 42 — кривая *2*). Наблюдения приведены в табл. 55—57, 67.

Таблица 71. Средняя кривая блеска звезды № 13 (серия МF)

Фаза	5	n	Фаза	s	n	Фаза	s	n
0P.012 .029 .049 .068 .084 .106 .129 .152 .166 .186 .203 .219 .240 .260 .275 .290 .306 .330	6.9 4.8 6.0 7.1 7.1 8.2 9.4 9.2 9.0 9.9 9.8 10.2 11.0 10.4 11.7 13.3 13.2	555556555555555555555555555555555555555	0P.358 .367 .381 .394 .420 .443 .461 .476 .487 .506 .524 .538 .566 .580 .588 .597 .619 .638	11.9 12.6 12.4 12.0 13.1 14.3 13.6 13.5 13.6 14.3 14.4 14.9 14.3 12.7 14.2 15.0 15.5 14.0 14.2	655555555555555555555555555555555555555	0P.693 .719 .729 .742 .771 .792 .806 .820 .826 .834 .865 .896 .910 .927 .938 .953 .969	15.3 13.1 14.7 14.4 13.7 13.9 15.8 14.5 14.9 13.8 14.9 11.4 10.7 7.9 8.0 8.4 7.4 7.9	55555555555655465

Таблица 72. Средняя кривая блеска звезды № 13 (серии АМ, АХ и RB)

Фаза	s	n	Фаза	s	n	Фаза	s	n
0p.008	7.7	5 5 5 5 5 7	0 ^p .326	13.4	5	0 ^p .722	15.2	5
.023 .040	6.9 7.4	5 5	.345 . 372	12.8 13.1	5 5	.737 .761	15.4 15.3	5 5
.060	8.0	5	.390	14.6	5	.773	15.3	555556555555 56 555
.080	7.0	5	.404	15.1	5	.789	14.2	5
.097	9.3		.422	13.8	5	.819	14.2	6
.107	10.2	5	.442	13.8	6	.845	15.5	5
.117	8.2	5	.457	13.6	5	.860	11.8	5
.134	8.5	5	.474	15.4	5	.881	12.1	5
.154	8.8	5	.500	14.6	5	.893	11.7	5
.166	9.1	55555555555555555555555555555555555555	.521	14.6	5	.903	10.0	5
.181	11.4	5	.535	15.9	5	.909	11.4	5
.203	10.0	5 🐧	.561	14.5	5	.918	8.6	5
.220	10.5	5	.573	14.4	5	.928	11.2	5
.235	10.6	5	.600	15.5	5	.941	7.4	6
.254	12.3	6	.625	14.5	5	.961	8.5	5
.268	12.7	5	.643	14.5	5	.981	6.9	5
.284	13.1	6 5 5 5 5	.659	15.6	សសសសសសសសសស ស ស	.991	7.4	5
.298	11.4	5	.674	14.7	5			
.312	14.2	5	.696	16.1	5			

долгопериодические и полуправильные звезды Звезда № 8-КЗП 379

Сводка всех моментов максимумов этой типичной мириды имеет вид:

Max JD	<i>E</i> O — C	Max JD	E O-C
2424518:	→ 6 - 2:	2429389:	+11 - 16:
4800: 6264	- 5 - 7:	9980	+13 0
7107	$\begin{array}{c} 0 + 20 \\ + 3 + 1 \end{array}$	30270 0556:	+ 14 + 3 + 15 + 1:
7377	$\frac{1}{4} + \frac{3}{4} + \frac{16}{16}$	1117	$\begin{array}{c} + 10 + 1. \\ + 17 - 2 \end{array}$
7688:	+ 5 + 7:	1720	+19 + 16
8527	+ 8 - 16	2850	+23 - 4
8832	+ 9 + 2	3144	+24 + 3
9154:	+10 + 36:	3977:	+27 - 26:

Двоеточием отмечены моменты, оцененные по ветвям или индивидуальным точкам. Найдены элементы

Max JD =
$$2426244 + 287.37 \cdot E$$
; $P^{-1} = 0.00347983$,

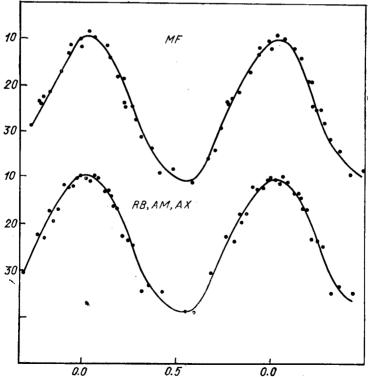


Рис. 43. Средние кривые изменения блеска звезды № 8-КЗП 379.

с помощью которых построены две средние кривые блеска: по снимкам серии МF (табл. 73, рис. 43 — кривая 1) и по снимкам серий AM, AX и RB (табл. 74, рис. 43 — кривая 2). Наблюдения приведены в табл. 55, 57, 76.

Таблица 73. Средняя кривая блеска звезды № 8 (серия МГ)

Фаза	s	n	Фаза	S	n	Фаза	s	n
0P.026 .059 .118 .144 .185 .203 .222 .231	8.4 9.5 11.5 13.5 18.4 18.5 23.7 24.5 24.6	10 10 10 10 10 10 10 10	0P.281 .306 .362 .419 .486 .569 .658 .696	27.4 31.0 33.5 38.8 37.8 40.7 35.7 33.7 28.8	10 10 10 10 10 10 10 10	0 ^p .764 .770 .785 .820 .880 .921 .931 .981	23.1 23.5 22.3 21.3 16.7 12.9 11.4 9.9 11.6	10 10 10 10 10 10 10 5 8

Таблица 74. Средняя кривая блеска звезды № 8 (серии АМ, АХ и RB)

Фаза	s	n	Фаза	s	n	Фаза	S	n	
0 P.017	9.9	5	0 ^p .247	23.1	5	0 ^p .821	17.4	5	
.040	10.5	5	.270	24.2	5	.841	19.1	5	
.063	9.2	5	.315	34.0	5	.870	17.3	5	
.084	10.1	5	.359	32.9	5	.900	11.6	5	
.120	12.8	5	.430	34.0	5	.921	11.9	5	
.133	12.8	5	.547	38.6	5	.951	11.6	5	
.153	13.8	5	.598	38.5	5	.974	10.0	5	
.166	16.2	5	.689	30.3	5	.995	9.7	5	
.184	16.2	5	.764	22.5	5				
.212	22.4	5	.798	23,2	5				

Таблица 75. Гарвардские наблюдения звезд № 6 и № 9 созвездия Horologium (серия RB)

7.7	-	-			
JD hel	№ 6	№9	JD hel	№ 6	№ 9
242 5560.462 5568.401 5589.360 5612.363 5615.366 5642.299 5654.287 5944.355 5950.414 6606.294 6566.613 6626.570 6675.408	14.0 15.1 15.5 14.5 14.5 16.5 16.5 16.2 15.5 14.5 14.5		242 6717.353 7156.251 7340.557 7426.353 7445.354 7475.287 7658.637 7688.617 7722.519 7726.521 7747.528 7754.412 7808.293	13.0 8.8 7.7 4.4 6.2 10.7 13.6 13.0 14.5 10.7 8.8 8.8	17.7

JD hel	№ 6	№ 9	JD hel	№ 6	№ 9
242			243		
8045.628	13.6		0556.645	10.5	21.0
8064.547	8.8	11.2	0591.618	11.7	10.6
8099.542	14.0		0618.505	8.8	11.0
8136.358	17.4		0639.592	11.9	12.8
8394.623	12.6		0647.431	11.9	14.8
8400.620	13.2	11.7	0665.586	17.2	-
8428.594	18.4	5.6	0679.494	13.0	21.0
8512.304	11.7		0701.401	15.5	21.0
8542.385	13.6	23.0	0920.637	8.8	17.5
8 566.298	11.7	_	0945.574	11.1	12.8
8756.573	17.4		0975.608	10.0	12.8
8877.303	8.8	17.4	1052.370	14.0	16.9
8926.304	13.2	17.4	1062.350	17.0	
9185.468	10.7	17.0	1107.388	9.8	
9204.444 9214.452	6.8 11.1	17.9	1113.400	8.8	
9228.544	9.8	20.0	1289.643 1297.619	9.8	12.8
9246.388	13.2	23.0	1303.628	9.8	16.3
9313.288	13.2	15.9	1312.575	8.8 10.1	19.2 17.7
9442.628	13.2	21.0	1358.507	10.1	7.5
9501.578	7.7	10.8	1376.387	15.1	11.7
9519.502	10.7	8.9	1415.364	13.0	18.9
9545.590	16.2	10.8	1430.302	8.8	10.5
9573.577	8.8	8.9	1443.381	8.8	
95 84.369	6.6	18.9	1650.641	8.8	20.0
9 605.297	10.7	21.0	1656.632	7.8	21.0
9629.410	11.9	-	1668.606	8.8	12.8
9 650.311	14.9		1670.642	12.6	
9806.647	6.8		1681.574	14.0	11.7
9826.632	7.7	11.7	1697.559	13.0	7.5
9867.533	16.2	7.9	1703.556	11.4	8.4
9877.580 9904.584	15.5 10.7	9. 5 10.8	1713.506	15.5	10.8
9913.458	11.9	19.6	1734.426 1754.346	10.9 10.7	11.7
9925.514	14.0	20.0	1801.303	18.2	
9945.445	14.0	20.0	2033.642	7.8	20.0
9954.524	13.5		2056.578	9.8	20.0
9963.294	12.6	16.3	2067.587	5.0	8.4
9968.298	12.6	18.3	2069.614	7.8	_
24 3			2070.588	4.9	10.8:
0145.628	13.0	17.9	2175.325	7.5	
0193.645	8.8		2178.293	8.8	
0201.644	5.5	12.8	2209.302	10.7	21.0
0240.623	11.1	9.3	2230.290	11.7	19.6
0257.517	17.4	4.0	2388.632	5.5	
0281.589	17.2	11.7	2389.653	5.0	
0290.459 0305.552	$\begin{array}{c} 17.2 \\ 8.8 \end{array}$		2441.590	10.0	10.8
0305.552	8.8 7.8	_	2503.370	14.5	15.5
0319.534	7.8 8.8	18.3	2800.582 2822.507	$9.8 \\ 9.8$	10.8
0344.389	16.2	$\frac{16.3}{22.0}$	2880.332	9.8 13.6	$\frac{11.2}{12.8}$
0351.329	11.7		2905.367	17.4	12.0
0427.272	8.8	10.8	2942.306	15.1	18.3

JD hel	№ 6	№ 9	JD hel	№ 6	№ 9
243 3158.544 3178.544 3241.368 3264.382 3294.379 3487.630 3538.544	12.6 6.6 15.5 14.9 8.8 8.8	14.6 12.8 19.2 20.0 19.2 17.4 9.3	243 3573.511 3598.371 3651.381 3675.366 3977.360 3999.376	12.0 12.6 14.0 10.9 16.7 15.1	14.8 17.5 18.9 — 21.0 23.0

Звезпа № 6

Полуправильная переменность этой звезды не вызывает сомнения. На рис. 44—46 изображены фрагменты кривой блеска. При этом наблюдения, полученные по снимкам разных серий, представлены

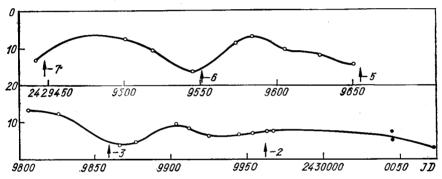


Рис. 44. Фрагменты кривой изменения блеска звезды № 6 Horologii.

различными значками. Согласие их между собой — способ проверки реальности изменений блеска.

Минимумы блеска у этой звезды выражены более четко, чем максимумы. Моменты минимумов и остатки О—С, вычисленные по формуле

Min JD =
$$2430167.7 + 102.76 \cdot E$$
,

приведены в следующей сводке:

Min JD	E	O - C	Min JD	Ε	0 - C
2426560 6687 9545	-35 -34 -6	$-11 \\ +13 \\ -6 \\ -7$	2431395 1703 1803 2125	+12 + 15 + 16 + 19	-6 -6 -9 +5
9866 30165 02 75	$-3 \\ 0 \\ +1$	+ 7 3 + 5	3255	+30	+5 +5

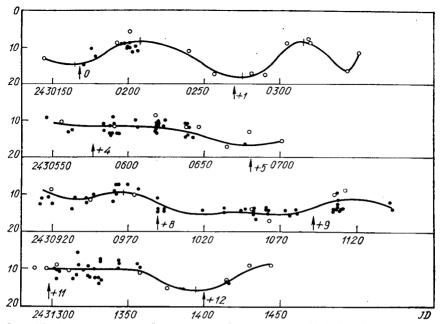


Рис. 45. Фрагменты кривой изменения блеска звезды № 6 Horologii в интервалах $2430\bar{1}50$ —2431300.

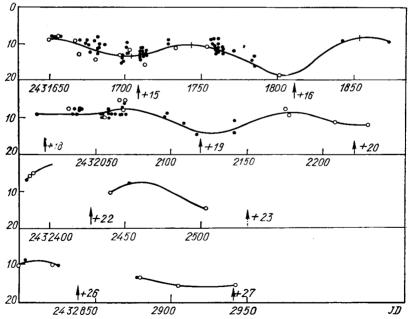


Рис. 46. Фрагменты кривой изменения блеска звезды № 6 Horologii в интервалах 2431650—2432850.

Моменты эфемеридных минимумов на рис. 44-46 показаны стрелками с соответствующими номерами E.

Максимумы определены хуже. Остатки О — С вычислялись

относительно формулы

Max JD =
$$2430217 + 102.76 \cdot E$$
.

Наблюдения приведены в табл. 55, 75.

Звезда № 9

Как видно из фрагментов кривых блеска, изображенных на рис. 47 и 48, данная звезда — полуправильная переменная. Моменты максимумов, более или менее удовлетворительно связанные формулой

Max JD =
$$2430610 + 182.6 \cdot E$$
,

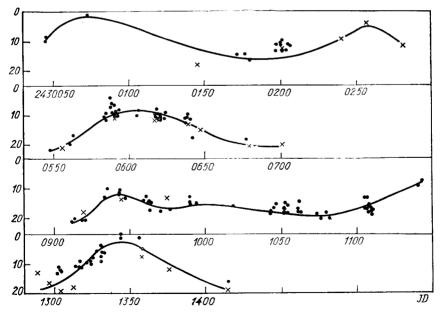


Рис. 47. Фрагменты кривой блеска звезды № 9 Horologii в интервалах 2430050—2431440.

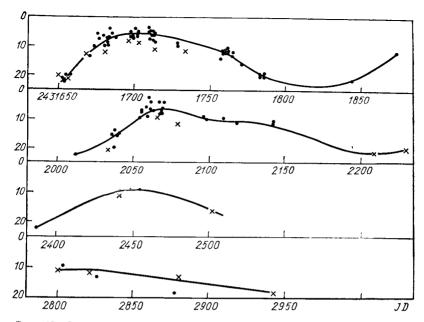


Рис. 48. Фрагменты кривой блеска звезды № 9 Horologii в интервалах 2431650—2432950.

приведены в следующей сводке:

Max JD	E	$O \rightarrow C$	Max JD	E	0-0
2426570	22	-23	2430602	0	8
6950	20	→ 8	0943	+ 2	-32
8470	 12	+51	1342	+ 4	+ 2
9527	 6	+13	1703	+ 6	- 3
9860	— 4	20	2070	+ 8	- 1
30075	→ 3	+13	2451	+10	+15
0255	 2	+10	3523	+16	 9

Наблюдения представлены в табл. 55, 75.

Неизученная звезда

Большое количество наблюдений звезды № 4 приведено в табл. 55—57, 58. К сожалению, оценки блеска, выполненные по снимкам разных серий, не согласуются между собой. Звезда ярка и, по-видимому, красная, чем может объясняться большое рассеяние наблюдений. Возможно даже, что звезда не переменна.

Таблица 76. Гарвардские наблюдения звезды № 8

					
JD hel	s	JD hel	s	JD hel	S
Серия ВВ					
2 42		242		242	
5560.462	(26.8	9877.580	39.3	1289.643	41.5
5589.360	29.5	9945.445	15.7	1297.619	41.5
5944.355	17.4	9954.524	15.0	1303.628	44.5
6006.294	17.4	9963.294	11.4	1358.507	28.5
6245.561	10.2	243	11.7	1415.364	14.4
6675.408	(29.5	0193.645	15.0	1650.641	20.0
6717.353	(29.5	0201.644	18.9	1656.632	20.3
6726.303	(21.8	0240.623	11.4	1668.606	17.4
6771.264	22.8	0257.517	10.4	1703.556	9.5
6915.655	(17.4	0282.411	8.6	1713.506	8.8
7090.331	11.4	.434	8.6	1774.382	21.8
7096.300	10.4	.446	8.6	2033.642	11.4
7156.251	13.1	0289.392	10.2	2035.541	11.4
7340.557	13.4	.404	9.5	2067.587	24.0
7399.431	9.8	.427	9.5	2069.614	24.8
744 5.354	20.0	0290.459	9.5	2070.588	24.8
7688.617	9.1	0299.441	11.4	2175.325	(29.5)
7 747.528	26.2	0305.552	12.9	2178.293	(29.5)
7754.412	25.1	0313.347	16.2	2209.302	25.1
8064.547	37.1	.359	18.5	2388.632	(21.8
8136.358	(21.8	.383	15.9	2389.653	(29.5
8428.594	36.1	0318.389	15.0	2441.590	43.5
8542.385	8.2	0319.534	17.4	2503.370	31.4
8791.536	19.6	0351.329	30.5	2800.582	19.9
8926.304 9154.567	41.1 13.1	0364.327	(21.8 37.1:	2822.507 2880.332	10. 4 9. 3
9204.444	34.1	$0427.272 \\ 0556.645$	8.8	2942.306	27.2
9214.452	33.5	0618.505	27.3	3178.544	10.4
9228.544	35.8	0665.586	35.5	3241.368	28.5
9267.382	(21.8	0679.494	35.8	3294.379	41.5
9288.385	(21.8	0920.637	28.2	3487.630	17.4
9519.502	21.8	0975.608	35.6	3538.544	37.1
9573.577	(37.1	1052.370	28.5	3598.371	42.5
9584.369	42.5	1107.388	10.5	3 651.38 1	26.1
9650.311	15.0	1113.400	10.5	3675.366	20. 0
9826.632	41.5	1156.275	12.9	3977.360	9.9
Серия АМ					
242		243		243	
7981.639	13.1	0017.419	13.4	1270.629	(17.4)
8229.266	10.3	0055.293	22.8	1292.659	(17.4
8430.560	(29.5	0207.639	20.3	1319.545	24.8
8456.57 0	21.8:	0231.614	15.4	1325.550	29.5
8486.400	15.7	0262.439	9.5	1330.494	(26.8)
8518.292	12.9	0306.518	11.4	1458.347	17.4
8580.280	15.9	0313.339	19.9	1710.561	10.5
8584.267	17.4	0326.373	(21.8	1761.518	11.4
8604.264	26.8	0791.262	19.6 (21.8	1859.287 1881.269	(21.8 (21.8
9389.207 9528.460	8. 5 (26.8	0962.499 1166.258	12.6	2000.655	9.4
3020.400	(20.0	1 100.200	12.0	2000.000	3.4

Продолжение табл. 76

JD hel	s	JD hel	s	JD hel	s
243 2005.689 2013.655 2035.609 2052.562 2060.551 2119.385 2142.392 2175.362	10.9 9.9 10.4 17.4 19.6 (29.5 (29.5 (27.8	243 2390.659 2418.589 2422.568 2469.445 2563.358 2775.570 2804.558 2851.511	(21.8 (21.8 31.5 (29.5 8.5 (21.8 16.7 7.9	243 3088.652 3133.636 3185.520 4035.293 4366.299 4397.353 4684.391 4689.381	17.4 10.4 12.4 13.4 (29.5 (29.5 (26.8 (21.8

Глава IV. ПЕРЕМЕННЫЕ ЗВЕЗДЫ В СОЗВЕЗДИЯХ ОРЛА, СТРЕЛЫ И ЛИСИЧКИ

Автор исследовал 30 переменных звезд по снимкам московской коллекции. К этим наблюдениям добавлены оценки блеска некоторых звезд на симеизских и одесских снимках. Большинство изученных звезд — короткопериодические. Звезда UU Стрелы наблюдалась

Таблица 77. Степенные шкалы блеска звезд сравнения

Taowinga	7. 0.0.	icinibic iiiii					
Звезда	a	ь	С	d	3	f	k
MO Aql							
Московская	0.0	7.0	11.7	16.2	20.3	24.5	
Симеизская	0.0	7.4			26.8	32.8	
MP Aql	5.0	17.0	-	25.0		8.0	0.0
MR Aql	0.0	10.3	21.5	31.5	- _		17.4
NN Aql*	-4.8	0.4	0.0	4.4	4.7	6.4	17.4
V 453 Aql	0.0	7.4	15.7	24.0	32.9	42.9	
V 611 Aql	0.0	6.4	12.4	20.4	-	_	-
V 647 Aql	0.0	8.7	18.4	25.1			
V 999 Aq1	0.0	7.4	15.7	24.0	32.9	42.9	_
V 1013 Aql	0.0	8.8	19.5		-	_	
V 1024 Aql	0.0	5. 6	10.1	17.4	-	-	
V 1033 A ql	0.0	11.8	20.6	25.6			
V 1064 Aql	0.0	8.0	8.4	15.7	20.7		
V 1148 Aql	0.0	8.8	17.8	27.8	-	_	
UU Sge				10.7			
Московская	0.0	4.6	14.5	19.7			_
Симеизская	0.0	5.4	15.7	21.5	-	-	
DG Sge	0.0	10.6	13.3	19.7	27.7		
DP Sge	0.0	5.5	12.5	$18.5 \\ 24.2$	29.9		
EG Sge	0.0	9.2	17.2		29.9 23.4		
FU Sge	0.0	3.6	11.9 4 .9	19.4 12.8	23.4 17.5		_
FX Sge	5.6	0.0 10.9	17.0	21.4	17.0	_	_
FY Sge	0.0		12.8				_
GS Sge	0.0	5.6 8. 5	14.0	21.3		_	
GT Sge	0.0	9.1	19.7			=	_
GW Sge	0.0	10.9	20.0	28.0	34.3		_
EX Vul	0.0	7.8	13.6	20.0	04.0		
GH Vul	0.0		14.3				
HU Vul	0.0	9.5	20.8		_		_
HV Vul	0.0	10.3	20.0	_	_		
КЗП 4786	0.0	0.4	16.4	24.6			
Московская	0.0	9.4 9.0	22.7	24.0	_	_	
Сименаская	0.0 0.0	10.5	20.3	_	_		
ҚЗП 5008	0.0	10.0	20.3				

^{*} g = 10.7; h = 12.3; l = 21.6.

на московских снимках В. П. Безденежным и вывод ее элементов сделан нами совместно. В таблице 77 приведены данные о звездах сравнения — степенные шкалы их блеска.

MO Орла (Aquilae)

Это звезда типа Миры Кита. Симеизские и московские наблюдения дали возможность определить семь точных моментов максимума (они отмечены в сводке моментов восклицательными знаками) и 14 моментов усиления блеска. По точным моментам способом наименьших квадратов получена формула

Max JD = $2432825.6 + 158.42 \cdot E$. Источник Max JD E O—С Источник Max JD EO-CСимеиз 24328301 0 + 4 Москва 24393191 41 - 2 2 31421 0 + 2 × 9640 43 × 3460 4 +1» 9780 44 <u>–</u>16 +206014 20 9968 45 +14Москва 27 7130 +27401031 46 -1075741 30 > 0428 48 **→ 2** 7900 32 > -- 5 0747 50 0 8227 * 34 +151417 54 +378558 36 ± 29 1544! 55 + 5 8698 37 +21> 1862! 57 8999 39

Наблюдения приведены в табл. 78, 79.

Таблица 78. Симеизские наблюдения созвездий Sagitta и Aquila

						· .rquu	
JD hel	мо	MP	MR	· NN	V 1013	UU Sge	DG Sge
243				·	·	·	
2794.278	18.6	20.2	3.9	3.6	1.0	0.0	10.4
2797.283	14.7	23.0	5.9	9.2	0.0	18.6	6.1
2798.317	14.0	19.4	5.7	1.9	2.6	3.1	12.5
28 02.33 3	13.6	22.1	19.1	4,1	0.0	2.2	6.2
282 1.228	4.4	27.0	8.0	17.8	1.8	0.0	17.4
2830.224	2.0	(25.0)	(31.5	11.2	0.9	6.5	16.2
2831.219	2.0	(25.0	7.2	14,0	1.8	11.9	19.7
2 851.210	13.2	(25.0)	7.7	11.2	1.8	11.4	8.3
2 854.183	13.5	(25.0)	8.0	16.8	3.5	4.8	19.7
2 855.188	13.2	(25.0)	24.5	12.0	0.0	2.3	7.6
2861.181	17.6	(25.0	10.3	15.4	1.6	6.5	16.6
3 033.534	18.7	(25.0	8.0		3.2	19.2	12.3
3063.473	23.8	(25.0)	19.5	12.3	0.0	1.8	. 6.9
3084.403	24.5	(25.0)	9.3	-	1.6	2.7	22.5
3100.469	(24.5	(25.0)	8.4	16.0	1.8	3.6	18.6
3121.320	13.2	(25.0	6.2	20.0	1.8	0.0	6.2 .
3124.29	9.4	(17.0	8.3	4.6	0.9	3.1	17.4
.34	9.8	(25.0)	9.2	3.6	1.8	3.2	19.7
3125.342	9.4	(17.0	8.0	17.4	0.0	2.7	14.1
.364	11.7	(25.0)	9.0	20.8	0.0	1.0	6.2
3127.28	8.9	(25.0)	7.2	3.3	7.0	1.8	16.6
.348	7.0	(25.0	9.3	5 .6	13.7	2.3	15.6
3128.34	6.2	$(25\ 0)$	8.4	4.4	0.0	7.7	19.7
.398	7.0	(25.0)	8.3	2.8	0.0	11.0	22.8

JD hel	МО	МР	MR	NN	V 1013	UU Sge	DG Sge
243 3146.286339 3148.324 3151.305360 3152.269321 3154.273355 3157.278349 3158.310 3160.409 3178.290342 3179.245300 3184.256305 3185.251324 3187.274 3203.215265 3205.196 3206.244 3207.204259 3215.217 3216.289 3239.181 3412.4 3414.400 3438.229 3441.400 3438.229 3441.400 3444.370 3446.342390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388439390 3447.388	4.4 4.0 3.5 4.0 3.5 7.8 2.8 3.5 4.0 3.9 4.0 4.0 5.2 11.7 12.8 14.5 — 16.2 15.1 14.7 — 20.3 23.3 (20.3 (20.3 (20.3 (20.3) (20.3 (20.3) (20.3 (20.3) (20.3) 15.6 14.0 11.7 13.6 12.3 14.3 14.5 11.7 13.6 11.7 13.6 6.1	(25.0 (25.0	MR 8.5 8.3 8.3 8.4 9.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	NN 18.4 0.4 14.2 19.4 16.7 12.3 15.4 19.4 21.6 19.6 3.6 11.1 6.0 10.2 20.2 9.4 16.7 14.6 9.6 14.0 20.2 12.3 11.6 15.5 4.8 12.3 12.9 15.7 14.3 — — — — — — — — — — — — — — — — — —	0.0 0.0 0.0 0.0 0.0 0.0 2.9 1.6 0.0 2.9 3.1 3.7 0.0 1.8 3.7 3.2 2.9 1.8 0.0 1.6 0.0 2.9 1.6 0.0 2.9 1.6 0.0 2.9 1.6 0.0 1.8 1.6 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	UU Sge 2.7 3.2 0.0 0.0 0.0 0.0 0.0 2.7 3.6 9.7 3.2 3.6 2.2 3.2 2.7 2.1 1.1 2.7 5.4 5.4 0.0 0.0 3.2 2.7 2.7 2.7 2.7 2.7 3.6 6 5.4 19.3 10.6 17.2 4.5 0.0 3.2 —1.0 6.4 2.2	22.8 21.8 7.3 22.2 21.8 7.2 7.2 18.8 16.9 16.3 13.8 16.6 7.9 10.4 13.9 17.2 19.1 12.3 19.7 18.2 11.3 7.9 17.0 16.0 8.3 18.1 19.7 10.4 18.7 13.5 21.7 16.6 21.7 17.2 21.7 17.0 15.6 21.7 15.6 8.1 15.6 15.6 15.6
.422 6016.361 6022.406 6023.393	6.1 6.1 7.8 6.0	13.2 12.8	9.3 10.3 (21.5	8.8 	1.6 0.0 — 0.0:	1.8 0.0 3.2	15.6 17.8 19.7 6.6

145

JD hel	МО	MP	NN	V 1013	V 1024	V 1033	V 1064
		'''	1414	V 1013	V 1024	V 1033	V 1064
243 7118.403	_			_	_		11 5
7136.497	9.4	(17.0	13.4	4.4	3.1	10.3	11.5 10.2
7159.297	21.7	(17.0	12.9	4.4	2.8	9.1	8.0
7160.360	17.4	(17.0	15.6	0.0	3.2	9.8	10.5
7163.362	20.7	(17.0	16.0	2.0	3.2	10.5	8.4
7164.381	19.7	(17.0	14.3	3.2	3.2	10.7	8.4
7165.413	21.7	(17.0	11.7	2.6	2.8	10.7	8.4
7166.371	22.7	(17.0	10.7	3.5	2.8	11.8	10.5
7168.424	24.7	(17.0	15.7	2.6	3.2	10.7	8.4
7175.366	(19.7)	(17.0	15.9	0.0	3.2	25.6	10.5
7176.385	(19.7)	(17.0	10.1	3.8	2.8	10.7	10.8
7194.361 7196.298	(19.7	(17.0	14.8	17.7	3.5	9.8	8.9
7220.217	(19.7 (19.7	(17.0	15.7	0.0	21.4	9.1	8.4
7223.211	27.7	(17.0 (17.0	6.4 6.4	1.8	2.8	10.7	8.4
7546.401	12.4:	(17.0	10.1	0.0 0.0	19.4 3.4	10.7	8.4
7576.321	1.0	(17.0	12.4	2.0	3.4 3.4	10.7 9.8	8.4
7578.306	3.1	(17.0	12.0	0.0	3.4	9.6 9.4	15.7
7843.494	(9.4	(17.0	11.8	<u>-1.0</u>	3.4	9.8	8.4 17.7
7877.459	9.4	(17.0	18.1	-1.0	3.4	9.7	12.6
7885.469	7.7	(17.0	17.4	-1.0	3.4	9.1	12.6
7887.477	7.3	(17.0	10.7	1.1	3.4	9.1	10.8
7902.341	4.7	(17.0	14.4	3.3	3.0	15. Î	8.4
8144.501	(9.4	(17.0	3.8	1.3	2.8	9.8	3.6
8227.394	`5.5	(17.0	10.1	2.9	4.0	9.1	5.3
8261.464	17.4	(17.0	2.5	0.0	3.7	9.1	3.4
8268.430	(9.4)	(17.0	2.1	0.0	3.7	9.1	2.3
8281.309	(9.4	(17.0	14.0	2.0	12.5	10.7	2.7
8282.265 8554.488	21.7	(17.0)	4.0	2.0	3.7	14.0	4.6
8561.407	7.5 7.5	(17.0	3.9 4.3	0.0	3.2	10.7	6.2
8623.458	7.0	(17.0	5.3	0.0	3.4	9.1	10.0
8668.347	18.7	(17.0	18.4	0.0	2.8	9.8	8. 4: 13.6
8669.220	14.4:	(17.0	5.6	2.0	3.2	27.6	10.0
8673.305	14.6	(17.0	13.2	0.0	14.5	9.8	8.4
.345	14.4:	(17.0	13.2	2.0	(17.4	9.8	12.6
8697.219	10.4	(17.0	14.0	2.9	` 3.2	7.9	8.4
8698.219	9.4	(17.0	6.4	2.0	3.2	9.1	8.4
8699.250	8.5	(17.0	2.9	0.0	3.4	10.7	7.7
8703.219	9.4	(17.0	15.7	2.0	3.2	9.1	7.6
8880.522	19.7	(17.0	3.2	0.0	3.4	9.1	10.2
8905.463	(9.4)	(17.0	8.6	2.0	2.8	9.8	13.6
8910.405 8913.484	(19.7	(17.0	15.2	2.0	3.2	22.6	8.4
8916.416	(19.7	(17.0	9.0	4.4	2.8	10.7	7.0
8942.420	(19.7	(17.0	5.5 15.7	$\begin{array}{c} 2.2 \\ 2.8 \end{array}$	2.8	9.8	7.3
8946.395	(9.4	(17.0	15.7	0.0	3.7 3.7	9.8 (20.6	9.4
8951.495	(9.4)	(17.0	16.4	0.0	3.7 2.8	9.8	8.4
8964.443	19.7	(17.0	14.9	0.0	2.8	16.8	6.7
8968.463	16.3	(17.0	16.4	0.0	2.8	10.7	7.2
8970.520	14 .6	(17.0	16.3	0.0	20.4	12.9	6.9
8972.464	17.4	(17.0	17.4	0.0	3.2	9.8	5.9
8974.482	17.4	(17.0	12.2	13.2	3.7	9.8	6.5

JD hel	MO	MP	NN	V 1013	V 1024	V 1033	V 1064
243							
8977.477	14.6	(17.0	14.4	1.0	3.7	10.3	5.0
8979.496	15.9	(17.0	16.4	-1.0 -1.0	$(22.4 \\ 3.7$	10.7	5.0
8980.494	12.8	(17.0	16.8	1.0	3.7	9.1	5.0
8999.432	6.8	(17.0	14.9	0.0	3.2	9.4	4.7
9236.537	(19.7	14.3		-1.0	3.7	9.8	5.9
9237.547	(19.7	17.0?	14.9	0.0	3.4	9.1	5.6
9269.511	(19.7 (9.4 15.6	9.2	15.2	0.0	(17.4	9.1	7.3
9292.478	15.6	13.6	14.3	-1.0	3.4	9.1	8.4
9294.412	11.7	15.0 (17.0	14.3	0.0	3.7	9.1	8.4
9301.435	-2.0	(17.0	15.2	3.5	3.7	9.8	10.8
9323.497	2.0	(17.0 (17.0	5.7:		3.4 3.7		8.4
9329.500	3.8	(17.0	13.6	0.0	3.7	9.1	8.4
9334.508	7.5	(17.0	2.2	$\begin{array}{c} \textbf{0.0} \\ \textbf{2.9} \end{array}$	2.8	10.7 11.8	7.3 6.5
9344.301	8.9 9.4	(17.0 (17.0	16. 4 11.8	2.9 17.6	2.8 3.4	9.8	6.5 5.9
9346.302 9379.322	(19.7	(17.0	11.8	$\frac{17.6}{2.0}$	2.8	9.8 9.8	5.9 6.5
9382.298	(19.7	(17.0	16.4	0.0	(20.4	10.7	10.0
9383.453	(9.4	(17.0	15.7	0.0	3.4	9.8	7.3
9384.315	(19.7)	(17.0	1.6	0.0	3.2	15.87	6.3
9385.293	(19.7	(17.0	15.2	0.0	3.2	9.8	6.5
.382	(19.7	(17.0	14.3	-1.0	3.4	13.6	6.3
9387.353	(19.7	(17.0	13.6	-1.0 -1.0	3.2	9.8	6.3
.407	(9.4	(17.0	11.7	0.0	2.8	9.8	10.2
9391.376	(19.7	(17.0	9.3	15.6	3.7	9.8	7.3
9406.302	(19.7	(17.0	11.8	2.0	3.4	9.1	8.4
9646.502	10.4	(17.0	16.0	0.0	2.8	9.8	12.0
9647.480	7.9	(17.0	14.3	-1.0	3.2	9.8	10.2
9652.472	12.8	(17.0	4.3	0.0	3.4	9.8	8.4
9655.489	11.7	(17.0	12.9	0.0	3.4	(25.6	7.3
9677.480	(19.7	8.0	5.5	0.0	3.4	9.8	6.5
9678.458	18.8	8.0	16.6	0.0	$\frac{2.8}{3.4}$	10.7 9.8	5.6 5.0
9681.477	19.7	6.4 4.8	0.0 11.8	$\begin{array}{c} 0.0 \\ 18.5 \end{array}$	3.4 3.4	9.8 9.8	5.0 5.3
9684.497 9686.467	19.7?	4.6	19.5	-1.0	2.8	9.8	5.0
9689.471	19.77	4.0	16.3	—1.0 —	3.4	J.0 	5.9
9704.329	(9.4	12.5	17.4	0.0	2.8	9.8	6.5
9706.409	(9.4	12.5	4.8	1.0	(20.4	10.7	5.6
9707.305			17.4	-1.0 -1.0	`	9.8	5.0
9708.348	(9.4	9.8	15.5	0.0	2.2	10.7	4.7
9711.378	(9.4	(17.0	16.3	0.0	2.8	9.8	5.0
9712.345	ું(9.4	11.8	15.7	0.0	28	9.8	5.0
9714.340	(19.7	14.4	19.5	0.0	3.4	9.1	4.6
9716.431	(19.7	15.7	15.7	2.0	2.2	9.8	
9730.312	(19.7	(17.0	15.5	0.0	3.4	9.8	5. 0
9743.427	(9.4	(17.0	5.3	0.0	3.4	9.8	5.0
9745.402	(19.7	(17.0	15.5	0.0	3.4	22.6	4.2
9746.414			9.0	0.0		10.4	8.4
9764.351	19.7?	(17.0	13.4	0.0	3.4	9.8	7.5
9765.262	18.7	(17.0 (17.0	14.3 13.6	0.0	3.2	9.1	7.3
.308	18.7	(17.0	13.6	-1.0	3.2	9.1	$\frac{6.9}{7.2}$
.359 9767.260	17.6	(17.0 (17.0	5.5	0.0 1.0	4.5 17.4	9.1 9.1	7.2 6.5
.306	18.6 16.3	(17.0	13.6 13.6	-1.0 -1.0	4.7	9.1	6.3
.500	10.5	(17.0	10.0	-1.0	7./	. 3.3	0.3

JD hel	МО	MP	NN	V 1013	V 1024	V 1033	V 1064
243 9767.353 9769.251 .296 .341 9770.235 .279 .325 .370 9772.289 9968.529 .553 9974.542 9999.414	15.1 15.6 12.8 15.6 14.6 15.1 14.6 6.3 5.5 7.7 20.7	(17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0	14.9 15.5 14.9 14.0 14.9 16.0 15.7 15.5 5.6 19.5 14.3 10.7 7.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.7 3.7 3.7 3.7 3.7 3.4 3.4 3.4 3.0 2.8 3.4 2.8	9.8 9.4 9.1 9.1 9.1 9.1 9.1 10.7 11.8 19.7 11.8	5.6 6.5 7.3 5.6 5.9 5.9 7.3 13.0 7.3 8.4 6.5
244 0007.422 0033.485 0036.456 0071.401 0072.464 0086.302 0093.469 0094.424 0096.306 0097.504 0098.362 0117.432 0118.276 0119.269 0122.294 0123.278 0125.312 0153.197 0157.360 0386.512 0387.500 0426.397 0427.475 0428.460 0473.343 0475.305 341 0502.251 .287 0509.241 0510.285 0511.260 0512.311 0744.487 .510 0747.509	(19.7 (9.4 ————————————————————————————————————	(17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 7.0 7.1 8.0 (17.0	4.6 3.7 2.1 12.9 6.4 17.4 12.0 17.4 19.5 3.7 5.5 10.7 5.6 14.9 8.6 14.7 17.4 17.4 17.4 17.4 11.0 14.0 4.8 15.2 17.4 12.4 3.2 15.5 17.4 16.3 16.3 16.3	0.0 18.4 -1.0 -0.0 2.6 -2.0 -1.0 0.0 8.8: -1.0 0.0 1.1 0.0 0.0 1.1 13.7 -1.0 1.3 0.0 2.2 2.2 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2.8 3.4 3.4 3.4 3.4 4.2 3.4 4.2 3.4 4.2 3.4 4.2 3.4 3.4 2.8 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	9.8 22.6 9.8 9.8 14.2 11.8 10.7 10.8 9.8 9.8 10.8	8.4 5.6 5.4 5.5 5.6 6.7 5.6 6.7 5.6 6.7 5.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6

JD hel	МО	МР	NN	V 1013	V 1024	V 1033	V 1064
244			: . <u></u>				
0783.478	15.9	9.8	-1.0	-1.0	3.4	10.7	6.0
0799.505	(19.7:	17.0	15.2	14.6	3.4	9.8	4.8
0800.518	(19.7	17.0	19.1	0.0	3.4	10.7	4.7
0801.418	(19.7	15.0	5.1	0.0	3.4	11.8	3.6
0802.457	(19.7	17.0	19.1	0.0	3.4	10.7	4.8
0806.424	(19.7	(17.0	18.8	-1.0	3.4	10.7	4.8
0808.330	18.8	13.1	3.5	-1.0	3.4	10.7	4.8
0809.540	(9.4	13.4:	3.2	2.2	3.4	10.7	3.6
0810.377	(19.7	16.0	15.2	1.1	2.8	9.8	4.2
0812.539	<u>`</u>		9.8	—	3.4	10.7	4.8
0819.270	(19.7	17.0	14.3	0.0	3.1	9.8	5.6
0822.342	(19.7	(17.0	10.7	10.1	3.1	10.7	4.8
0823.436	(17.4	(17.0	9.3	0.0	8.3	11.8	5.3
0827.407	(17.4	(17.0	3.5	0.0	3.4	10.7	4.8
0828.463	(9.4	(17.0	14.7	0.0	3.4	10.7	5.6
1161.542	(9.4	(17.0	13.6	2.2	3.4	9.8	-1.0
1177.450	(9.4	9.0	16.0	1.1	3.4	9.8	$\frac{1.2}{4.7}$
1417.548	13.4	9.5	3.2	2.0	3.7	10.7	
1427.546	13.1	12.5	12.9	2.2	2.8	11.3 11.8	4.8 5.3
1452.521	(19.7	(17.0	15.6	2.0	$\frac{2.2}{3.7}$	10.7	10.2
1454.498	(19.7	20.0?	15.6	2.9	$\frac{3.7}{2.8}$	10.7	8.4
1475.471	(19.7	(17.0)	5.5 10.7	14.7 0.0	3.4	11.8	8.4
1482.510	(19.7	(17.0	0.0	0.0	$\frac{3.4}{4.2}$	11.8	6.3
1486.476	(19.7	(17.0 (17.0	17.4	3.9	3.4	10.3	6.0
1492.542 1508.357	(19.7 18.0	(17.0	19.2	$\frac{0.5}{2.5}$	3.4	10.7	2.8
1510.487	10.0	(17.0	18.4	0.0	5.6	10.7	4.8
1513.488	18.8	(17.0	18.4	2.0	3.4	9.8	4.2
1514.499	18.0	(17.0	15.2	2.0	5.0	9.8	3.6
1518.502	15.4	(17.0	14.3	2.9	3.4	10.8	4.2
1522.522			12.9	2.6	3.4	11.8	4.2
1530.297	11.3	(17.0	16.8	0.0	3.4	10.7	2.4
1532.282	9.4	(17.0	8.6	4.4:	2.0	10.7	4.8
1536.52 0	2.1	(17.0	14.3	0.0	3.4	11.8	4.8
1 546.432	2.3	(17.0	16.3	0.0	3.4	11.8	4.2
1548.41 9	1.2	(17.0	2.6	0.0	2.2	11.8	4.8
1564.316	4.9	(17.0	14.7	0.0	3.4	10.7	4.8 4.8
1565.329	5.9	(17.0)	9.6	2.0	3.7	10.7	4.8
1566.320	5.9	(17.0)	9.3	0.0	$\frac{2.8}{3.4}$	10.7 10.7	5.3
1567.338	8.2	(17.0	17.4 15.7	3.9	3.4 18.4	10.7	5.3
1568.306	8.1	(17.0)	5.5	$0.0 \\ 0.0$	3.4	10.7	6.3
1569.311	9.4	(17.0)	15.5	$\frac{0.0}{2.9}$	3.4	10.7	4.8
1570.311	8.5	(17.0	15.5	2.5	2.0	10.7	
1571.337 1573.322	10.7	(17.0	5.9	0.0	3.4	10.7	4.8
1576.284	9.4:	(11.0	10.7	0.0	3.7	10.9	8.4
1577.390	11.4	(17.0	3.7	0.0	3.7	10.7	7.0
1594.265	19.7	17.0	8.6	0.0	3.4	10.3	10.2
1595.270	19.7	17.0	14.0	0.0	3.7	12.8	10.8
1596.260	19.7	17.0	15.5	0.0	3.4	11.8	6.5
1597.288	20.7	17.0	14.0	0.0	3.4	11.8	11.3
1598.297	19.7	17.0	3.5	2.0	3.4	11.8	8.4

JD hel	МО	MP	NN .	V 1013	V 1024	V 1033	V 1064
244 1803.533 1813.520 1837.458 1838.517 1839.505 1842.497 1860.473 1864.494 1865.520 1869.494 1873.506 1875.516	(9.4 (19.7 14.6 12.4 11.3 11.3 5.7 6.6 3.0 5.2 5.2 6.3	(17.0 15.0 11.6 9.8 9.8 6.0 14.3 13.0 17.0: 14.3 14.0 15.9	NN 15.5 17.4 10.7 9.6 16.3 16.4 17.4 16.3 13.4 14.7 14.3 18.8	0.0 13.7 2.0 1.8 0.0 0.0 0.0 0.0 2.0 0.0 2.0	3.4 12.9 3.4 2.8 2.8 2.2 (10.1 3.4 3.4	11.8 10.7 10.7 10.7 11.8 10.7 10.7 11.8 11.8 10.7	12.6 13.6 11.1 8.4 7.2 6.7 5.3 5.3 7.2 5.3 4.8
1887.411 1892.451 1901.458 1902.530 1916.380 1918.441 1922.448 1924.416 1928.395 1931.452	9.4 9.4 9.4 14.4 (9.4 19.7 20.7 (20.7	(17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0 (17.0	16.3 3.8 19.5 17.4 15.9 4.6 15.7 12.4	0.0 10.9 0.0 0.0 0.0 1.8 0.0 2.6 0.0:	3.4 3.4 3.7 4.2 3.4 3.4 3.4 3.4 3.4	10.7 10.7 10.9 10.7 11.8 10.3 11.3 11.3	5.6 5.6 5.0 5.0 5.6 7.3 6.5 5.6 9.3

MP Орла (Aquilae)

Звезда относится к типу Миры Кита.

Были определены следующие приближенные моменты максимумов:

Источник	Max JD	E	O C	Источник	Max JD	E O - C
Симеиз	2432794	-30	+14	Москва	2440121	+4+4
>	3210	-28		»	0778	+7 + 13
>	3412	27	−1 6	»		$+\dot{9} - \dot{19}$
*	6014	15	— 3	»	1415	+10 + 3
Москва	9264	0	+10	>	1838	+12 - 6
>		+ 2			1000	T12 - 0

Остатки О — С вычислены относительно формулы

Max
$$JD = 2439254.1 + 215.8 \cdot E$$
.

Наблюдения приведены в табл. 78, 79.

MR Орла (Aquilae)

Это звезда типа Алголя. Элементы, найденные Д. Хофлит [12], Min JD = $2425039.796 + 1.3893 \cdot E$.

не удовлетворяют наблюдениям автора. Весьма вероятно, что, согласно приведенной ниже сводке, должны быть приняты следующие элементы:

Min hel JD =
$$2432802.259 + 3.111213 \cdot E$$
.

Источник	Min JD	E	o – c
Хофлит Симеиз * * * * *	2425039.796 32802.333 2830.204 2855.188 3063.473 3446.342 3449.326 6022.406	$ \begin{array}{r} -2495 \\ 0 \\ + 9 \\ + 17 \\ + 84 \\ + 207 \\ + 208 \\ + 1035 \end{array} $	+0.013 + .074 056 + .038 128 + .062 065 + .042

Минимум длится около 0,31 суток, так что согласие наблюдений с элементами удовлетворительное. Приведение всех наблюдений к одному периоду показывает, что начальный минимум произошел несколько раньше эфемеридного.

Поэтому рекомендуется следующая формула:

Min JD =
$$2432802.30 + 3.111213 \cdot E$$
.

Наблюдения приведены в табл. 78.

NN Орла (Aquilae)

Звезда относится к типу RR Лиры. Хофлит [12] нашла элементы

Max JD =
$$2426243.537 + 0,5791 \cdot E$$
,

которые пригодны для построения сезонных кривых блеска. Они построены по симеизским, одесским и московским наблюдениям. Определены моменты максимумов блеска:

Источник	Max hel JD	E	o-c
Хофлит	2426243.537	11326	+0.013
Симеиз	32802.359	0	.000
» ·	3203.661	+693	.011
Одесса	6071.390	÷ 5645	+ .037
»	6422.306	+6251	+ .022
>	6789.42:	+6885	.011
Москва	7220.262	+7629	→ .016
>	8144.488	+9225	026
»	9334.527	± 11280	→ .028
>	9681.442	+11879	+ .009
»	40428.464	+13169	.002
»	1486.474	-14996	.000

Эти моменты удовлетворяют формуле, полученной по способу наименьших квадратов:

Max hel JD = $2432802.359 + 0.5790954 \cdot E$.

Однако систематический ход остатков О — С заставляет предположить, что период звезды переменен. Несмотря на это, по московским наблюдениям построена единая средняя кривая изменения блеска, приведенная в табл. 80. Наблюдения помещены в табл. 78, 79 и 81. Средняя кривая изображена на рис. 49.

Таблица 80. Средняя кривая изменения блеска NN Aquilae

Фаза	s	n	Фаза	s	n	Фаза	s	n
0 ^p .015 .066 .099 .156 .200 .250	11.8 14.1 13.6 14.5 15.7 16.7 15.7	10 10 10 10 10 10	0 ^p .330 .408 .476 .524 .611 .647	15.9 16.5 16.8 15.7 16.5 13.6 9.8	10 10 10 10 10 9 10	0 ^p .713 .739 .767 .815 .867 .924 .969	5.4 3.8 3.3 4.6 6.0 8.7 10.3	10 10 10 10 10 10

Таблица 81. Одесские наблюдения NN Aquilae

JD hel	s	JD hel	s	JD hel	s
24 3		243		243	
6049.474	4.7	6397.447	8.6	6479.270	6.7:
6050.483	21.6?	6398.464	22.6	6481.251	18.3
6051.464	14.9:	6399.448	18.3	6482.249	16.0
6053.450	0.7	6400.473	21.6	6484.256	9.3
6069.393	23.6:	6401.475	2.6	6485.261	17.3
6070.402	7.7:	6402,473	21.6	6487.282	14.1
6071.397	0.6	6404.461	14.9	6488.285	4.7
6075.378	18.8	6406.465	22.6	6490.263	17.0
60 76.381	21.6:	6407.463	17.3	6518.195	23.6
6078.379	3.8	6408.458	4.1	6756.487	5.7
6079.360	21.6	6410.447	18.3	6757.501	4.7
6080.415	21.6:	6422.395	3.0	6760.509	3.2
6081.377	18.3	6423.409	21.6	6766.513	4.77
6082.371	2.4	6424.411	22.6:	6789.425	3.6:
6083.378	21.6	6425.430	17.3	6809.382	7.7:
6101.313	19.7	6426.415	14.3	6817.329	6.7:
6105.269	14.9	6428.421	23.6:	6834.285	21.6:
6128.216	6.7:	6429.452	7.7	6840.274	21.6:
6131.223	18.3	6451.348	10.3	6868.243	17.3
6138.211	17.3	6453.371	21.6:	7137.489	5.7?
6371.490	13.1	6454.386	18.3	7144.453	4.7?
6372.482	3.6	6455.397	21.6	7169.421	5.6?
6379.508	4.7	6461. 364	21.6	7173.331	5.7?
6381.476	14.9	6462.350	14.9	7176.405	6.2?
6395.481	23.6	6463.345	13.1	7198.310	13.1
6396.456	17.7	6478.238	21.6		

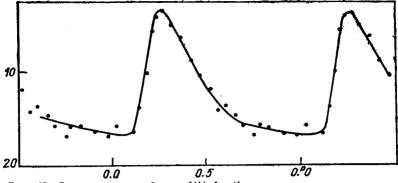


Рис. 49. Средняя кривая блеска NN Aquilae.

V 453 Орла (Aquilae)

Это звезда типа Миры Кита. В общем Каталоге переменных звезд приведены ее элементы:

Max JD =
$$2436089 + 321.08 \cdot E$$
.

По симеизским наблюдениям получается уверенный момент максимума $Max\ JD = 2433207$, который отклоняется от этих элементов на $O-C = +8^d$ для E = -9. Наблюдения приведены в табл. 82.

V 611 Орла (Aquilae)

Звезда относится к типу Алголя. Элементы Рольфса [22] Min JD = $2429163.246 + 5.42883 \cdot E$ подтверждаются моментом минимума, который обнаружен на симеизских снимках: Min JD = 2436014.39, O — C = $-0^d.04$ для E=1262. Наблюдения приведены в табл. 82.

V 647 Орла (Aquilae)

Звезда типа Алголя. Элементы Рольфса Min JD = $2428067.302 + 3.3990 \cdot E$ требуют улучшения, как это видно из следующей сводки:

E	O — A	o⊸c
1393	+0.224	-0.100
1461	+ .293	 .047
1476	+ .177	— .167
1488	+ .328	019
1581	+ .279	089
1583	+ .402	+ .033
	1393 1461 1476 1488 1581	1393 +0.224 1461 +.293 1476 +.177 1488 +.328 1581 +.279

Остатки О — А вычислены относительно формулы Рольфса. Все они положительны и довольно велики. Остатки О — С вычислены по нашей формуле Min JD = $2428067.302 + 3.399233 \cdot E$, которая

Таблица 82. Симеизские наблюдения звезд созвездия Aquila

					1 1		
JD hel	V 453	V 611	V 647	V 999	V 1024	V 1148	КЗП 4786
243		_					
2794.278	/49 O	0 0	C E	20.0	0.7	0.5	~ ~
	(42.9	8.8	6.5	30.9	3.7	3.5	6.3
2797.283	(42.9	3.8	5.8	29.6	3.4	2.9	5.4
2798.317	(41.9	3.2	5.0	24.0	3.4	$^{2.2}$	4.9
2802.333	(42.9	4.3	20.1	29.6	4.2	0.0	5.4
2821.228	(42.9	8.4	4.4	28.4	2.8	0.0	4.5
2830.224	(42.9	4.8	6.5	29.0			
				29.0	2.8	1.8	4.1
2831.219	(42.9	3.8	6.2	38.9	3.4	2.2	6.3
2851.200	50.9	3.8	7.4	26.7	(16.1	2.9	6.3
2854.183	44.9	4.8	5.4	26.7	3.4	0.0	6.3
2855.188	40.9	3.2	4.8	40.9	3.4	2.2	7.9
2861.181	32.0	3.2	6.1	41.9	3.4	6.2	5.7
3033.534	(42.9	2.6	21.3	29.6	J. T		
						2.0	7.0
3063.473	(42.9	3.5	4.4	44.9	3.4		14.7
3084.403	(42.9	3.8	15.8	29.6	3.4	16.8	11.0
3100.46 9	(42.9	3.8	5.4	42.9	3.4	0.0	6.0
3121.320	(42.9	4.3	5.8	29.3	4.2	-1.0	5.6
3124.29	(12.0	3.2	5.2	28.4	3.7	6.4	6.0
.34	(42.9	3.2	6.1	27.2			
	(42.9				3.4	4.8	5.3
3125.342	_	3.2	23.2	28.4	3.4	4.8	5.4
.364		3.2	23.2	27.6	3.4	2.9	5.4
3127.28	(42.9	2.7	6.1	30.7	2.8	2.0	5.7
.348	(42.9)	3.7	4.4	32.9	3.4	0.0	5.7
3128.34	(42.9	3.2	6.1	34.0	3.4	29.8	5.7
.398	(42.9	3.2	6.8	28.0	3.4	28.0	5.4
3146.286	(42.9	3.7	5.8	29.0	3.7	0.0	5.0
.339	42.9:	3.7	4.8	28.4	3.4	0.0	5.6
3148.324		3.9		27.6			
	45.9		5.8		4.5	2.2	5.1
3151.305	42.9	3.2	5.0	26.0	3.4	1.0	5.0
.360	42.9	3.2	5.0	28.4	2.8	2.9	9.0
3152.269	44.9	3.2	5.0	30.7	3.4	3.5	7.7
.321	42.9	8.4	10.6	24.0	3.4	0.0	9.0
3154.273		4.0	6.5	29.9	4.2	0.0	9.0
.355	43.9	3.2	6.1	27.0	3.4	2.9	6.4
3157.278	_	3.2	7.0	29.9:	11.1		10.0
.349	42.9	3.7	6.8	27.4	(17.1	0.0	9.0
3158.310	12.0	3.2	5.2	28.0	3.4		10.0
3160.409		3.6	5.5	28.0	3.7		
						2.2	8.4
3178.290	20.3	7.4	4.4	26.0	3.4		10.0
.342	22.2	4.3	5.2	29.9	2.8		11.0
3179.245	19.8	3.7	6.8	30.7	4.2		11.0
.300	20.3	8.1	6.1	29.0	2.4	0.0	11.0
3184.256	18.1	3.2	5.5	27.0	10.1!	2.2	12.0
.305	14.9	4.6	7.7	27.8	3.4	0.0	8.0
3185.251	13.3	4.3	4.6	28.0	5.6	0.0	6.8
.324	13.9	3.7	5.8	29.0	4.2		10.5
			8.7	30.2			
3187.274	11.6	4.3			4.2	0.0	7.2
3203.215	5.2	4.3	5.8	28.4	3.4	0.0	6.8
.265	3.3	3.2	5.8	29.1	3.4	2.2	8.4
3205.196	9.5	3.2	8.7	29.1	4.2	(25.8	9.0
3206.244	7.4	3.7	5.8	29.6	5.6	0.0	7.0
3207.204	5.3	3.2	6.8	27.6	4.5	-1.0	6.4
.259	5.9	4.6	5.8	28.4	5.6		10.0
3215.217	5.0	3.2	21.8	29.6	5.6	0.0	7.9
0210.211	0.0	0.2	21.0	20.0	0.0	0.0	1.3

JD hel	V 453	V 611	V 647	V 999	V 1024	∨ 1148	КЗП 4786
243							-
3216.289	9.5	3.7	6.8	29.1	4.5	(27.8)	7.0
3239.181	23.0	3.7	8.7	29.9	2.8	3.8	10.0
3412.4	(42.9)	4.3	7.6	29.3	3.4	0.0	11.5
3414.400	(42.9)	4.6	6.8	29.9		0.0	12.0
3438.429	(42.9	4.6	7.1	29.9	(18.1	0.0	7.9
3441.400	(42.9	3.2	20.1	30.9	3.5	0.0	7.9
3444.370	(42.9	3.6	7.7	33.9	3.7	0.0	10.0
3446.342	(42.9	4.6	6.8	30.7	3.2	0.0	12.0
.390	(42.9	6.4	5.8	26.2	4.7	0.0	6.0
3447.388	(42.9	4.3	6.8	29.9	4.7	0.0	10.5
.439	(42.9	3.7	4.4	30.2	3.7	2.5	7.7
3448.321	(42.9	4.3	24.3	32.9	3.4	0.0	
.379	(42.9	3.7	17.2	30.2	3.4	3.8	9.0
3449.326	(42.9	3.7	5.0	29.9	3.4	4.9	6.8
3451.404	(42.9	3.7	7.6	29.9	3.4	0.0	9.0
.453	(42.9	3.2	7.6	29.9	3.4	0.0	9.0
6014.393	(42.9	17.4	6.1	28.0	4.5	6.2	13.0
.444	(42.9	14.4	5.4	29.3	3.7	19.8	18.8
6015.368	(42.9	3.2	4.8	29.9	3.2	0.0	17.8
.422	(42.9	3.7	5.2	29.6	3.7	0.0	16.8
6016.361	(42.9	3.7	6.1	29.0	3.7	3.5	14.5
6022.406	(42.9	4.3	8.7:	29.3			
6023.393	(42.9	-	_		_		11.9

опирается на момент минимума, полученный по средней кривой блеска: Min JD = 2433448.288. Большинство остатков О—С отрицательны, но это не должно нас смущать — так расположились наблюдения во времени. Результаты наблюдений приведены в табл. 82.

V 999 Орла (Aquilae)

Звезда типа Алголя. Гесснер [7] получила формулу, в справедливости которой сомневалась: Min JD = $2435695.416 + 0.4335 \cdot E$. Наблюдениям автора она не удовлетворяет. Однако найти формулу, более соответствующую действительности, автору не удалось. Причина этого становится ясной при просмотре следующей сводки моментов ослаблений блеска:

Источник	Момент ослабления блеска	Источник	Момент ослабления блеска
Симеиз	2432831.219	Гесснер	2435645.396
>	2855,188	»	5701.505
»	2861.181	»	5718.426
»	3063.473	>	6070.415
»	3100.469	»	6112.418

Несомненно, целое число, умноженное на период, близко к шести суткам. Наблюдавшийся интервал между ослаблениями блеска,

равный 37 суткам, можно было бы считать равным шестикратному значению периода. Однако из наблюдений Гесснер видно, что два ослабления блеска отделены друг от друга на 16.92 суток. Следовательно, период не равен шести суткам. Более короткие периоды, которые позволили бы связать все моменты единой формулой, отыскать не удалось. Наблюдения приведены в табл. 82.

V 1013 Орла (Aquilae)

Звезда относится к типу Алголя. Она наблюдалась автором на московских и симеизских снимках. Отмечено 14 ослаблений блеска, даты которых приведены в следующей сводке моментов минимума:

Источник	Момент ослабления блеска	a <i>I</i>	Ξ	O — A	О	— С
Симеиз	2433127.348	5	52	+0.166	0	.017
>>	33206.244	5	45	+ .197	+	.015
Москва	7194.361!	19	91	+ .011	<u> </u>	.086
>	8974.482		33	+ .043	_	.017
>	9346.302!		0	+ .072	+	.020
»	93 91.376	+	4	→ .080	$\dot{+}$.029
20	9684.497!	+	30	+ .275	+	.230
>	40033.4851	+	61	+ .005	<u> </u>	.032
>>	0157.360	+	72	050		.085
>>	0799.505	+1	29	— .089		.111
>	0822.342	+1	31	+ .215	+	.194
>	1475.471	+1	89	106		.114
>	1813.520	+2	19	. .049	_	.050
>	1892.451	+2	26	+ .017	+	.018

Восклицательными знаками отмечены наиболее глубокие ослабления. Анализ наблюдений, выполненных вблизи минимумов блеска, показал, что наиболее подходящей является формула

Min JD = $2439346.23 + 11.26639 \cdot E$; $P^{-1} = 0.088759576$.

Таблица 83. Средняя кривая изменения блеска V 1013 Aquilae. Минимальные точки

Фаза	s	n	Фаза	s	n
0P.0001 .0009 .0128 .0181 .0267	17.6 15.6 10.1 18.5 4.4	1 1 1 1	0P.9764 .9850 .9893 .9944 .9964	1.8 14.6 13.7 18.0 12.0	2 2 2 2 2 2
Фаза	s	n	Фаза	s	n
0 ^p .0637 .1141 .1621 .2038	0.1 0.7 1.0 0.3	10 10 10 10	0 ^p .2425 .2950 .3296	0.2 0.8 0.2	10 10 10

Фаза	s	n	Фаза	s	n
O ^p .3785	0.7	10	0 ^p .6557	0.1	10
.4165	0.5	10	.7149	0.9	10
.4591	0.5	10	.7909	0.4	10
.4972	1.1	10	.84 61	1. 6	10
.5323	0.1	10	.8857	1.3	10
.5765	0.4	10	.9417	1.0	7
.6194	0.1	10	.9629	0.5	7

Она использована при вычислении средней кривой блеска, которая представлена в табл. 83 и на рис. 50. Наблюдения на симеизских снимках проведены позднее. Это дало возможность улучшить формулу и получить следующие элементы:

Min JD = $2439346.282 + 11.266153 \cdot E$.

Наблюдения приведены в табл. 78, 79.

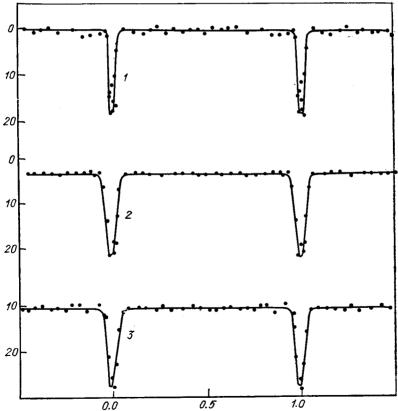


Рис. 50. Средние кривые изменения блеска Aquilae: 1 — V 1013; 2 — V 1024; 3 — V 1033.

V 1024 Орла (Aquilae)

Звезда типа Алголя. Наблюдалась автором только на московских снимках. Обнаружено 11 ослаблений блеска, моменты которых связываются формулой

Min hel JD = $2439269.526 + 1.790328 \cdot E$; $P^{-1} = 0.558556868$.

Относительно этой формулы вычислены остатки О — С, которые приведены в следующей сводке моментов минимума:

Момент ослас ния блеск		0 — C	Момент осла ния блес		o-c
2432851.200	3585	0.000	2439269.511	0	0.015
3157.349	-3414	+ .003	9382.298	+ 63	— .019
3184.256	-3399	÷ .055	9706.409	÷ 244	+ .043
7196.298	1158	.028	9767.260	∔- 278	+ .023
7223.211	-1143	+ .030	40125.312	- ∔ 478	+ .009
8673.345	333	 .002	1568.306	+1284	.001
8979.496	— 162	+ .003	1813.520	+1421	062

Уже после окончания исследования этой звезды автор обнаружил, что она находится на самом крае симеизских снимков. Дополнительные измерения дали три первых момента ослабления блеска, которые, как видно из сводки, прекрасно согласуются со сделанными ранее выводами.

Из московских наблюдений была вычислена средняя кривая блеска, которая приведена в табл. 84 и на рис. 50. Затмение частное и длится 0°.15, т. е. 0.27 суток. Наблюдения приведены в табл. 79, 82.

Таблица 8	84.	Средняя	кривая	изменения	блеска	V	1024	Aqui lae
-----------	-----	---------	--------	-----------	--------	---	------	----------

	•		<u> </u>					
Фаза	s	n	Фаза	s	n	Фаза	s	n
0p.005	20.4	1	Op.372	3.2	10	0p.802	3.4	10
.015	18.4	2	.423	3.2	10	.845	3.2	11
.025	12.5	1	.458	3.4	10	.882	3.0	10
.036	6.5	2	.495	3.4	10	.903	3.5	9
.067	3.5	10	.551	3.3	10	.929	3.3	4
.120	3.2	9	.582	3.3	10	.949	6.1	4
.154	3.2	10	.632	3.2	10	.971	13.7	2
.194	3.3	10	.675	3.2	10	.986	20.9	2
.266	3.4	10	.715	3.6	10	.999	18.4	1
.332	3.2	10	.764	3.1	10			

V 1033 Орла (Aquilae)

Это звезда типа Алголя. На московских снимках обнаружено восемь ослаблений блеска, которые хорошо (за исключением последнего) представляются формулой

Min hel JD = $2438669.204 + 3.59958 \cdot E$; $P^{-1} = 0.27781019$.

как это видно из следующей сводки моментов:

Момент ослабления блеска	Е	o-c	Момент ослабления блеска	E	o-c
2437175.336 8669.220 8910.405 8946.395	+67	-0.012 + .016 + .029 + .023	2439655.489 9745.402 40033.485 1887.411:	+274 +294 +379 +894	0.000 079 +.040 +.183:

Возможно, что период звезды слегка переменен. Средняя кривая блеска приведена в табл. 85 и на рис. 50, а наблюдения — в табл. 79.

Таблица 85. Средняя кривая изменения блеска V 1033 Aquilae

Фаза	s	n	Фаза	s	n	Фаза	s	n
0 p.0044	27.6	1	Op.3707	10.5	10	Op.7815	9.8	10
.0095	22.6	2	.4275	10.1	10	.8213	9.8	10
.0295	15.3	3	.4655	10.5	10	.8633	11.0	10
.0506	10.7	5	.5133	10.8	10	.9225	9.8	10
.0806	10.4	10	.5470	10.8	10	.9560	11.8	4
.1340	10.3	10	.5847	10.4	10	. 9 6 54	12.4	3
.1770	10.5	10	.6232	10.2	10	.9756	21.2	2
.2320	10.6	10	.6698	10.6	10	.9964	25.6	1
.2661	10.1	10	.7094	10.5	10			
.3142	10.8	10	.7513	10.8	10			

V 1064 Орла (Aquilae)

Это полуправильная переменная звезда.

Рихтер [21] отнес ее к быстрым неправильным переменным. Московские наблюдения автора (см. табл. 79) показывают, что такое заключение не имеет оснований. Согласно рис. 51 и 52 звезда изменяет блеск медленно, циклически. Продолжительность циклов колеблется от 295 до 410 суток.

V 1148 Орла (Aquilae)

Звезда типа Алголя.

Хофмейстер [14], открывший эту звезду, сообщил два момента минимума. На симеизских снимках автор обнаружил пять ослаблений блеска, что дало возможность определить период звезды. Элементы ее таковы:

Min hel JD = $2433128.407 + 3.658565 \cdot E$.

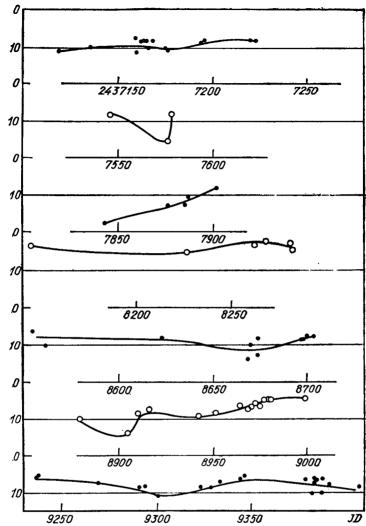


Рис. 51. Фрагменты кривой блеска V 1064 Aquilae.

Остатки О — С вычислены относительно этой формулы:

Источник	Момент ослабления блеска	E	OC
Хофмейстер	2430545.44!	—70 6	-0.02
- »	0578.41!	697	+ .02
Симеиз	3084.40	- 12	10
>	3128.37!	0	.04
>	3205.201	+ 21	→ .04
>	3216.29!	+24	+ .08
»	6014.44	+789	<u> </u>

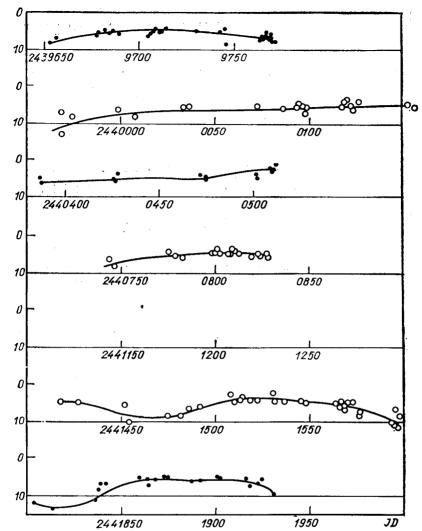


Рис. 52. Фрагменты кривой блеска V 1064 Aquilae.

Моменты наиболее глубоких ослаблений блеска отмечены восклицательным знаком. Они использованы при выводе формулы по способу наименьших квадратов. Весь ряд наблюдений не противоречит найденной формуле. Автор не вычислял среднюю кривую блеска, так как наблюдений (см. табл. 82) мало.

UU Стрелы (Sagittae)

Она является затменной звездой. Блеск ее оценен на московских снимках B. Безденежным и на симеизских снимках — автором (см. табл. 78, $8\ddot{\rm o}$).

91 Таблица 86. Московские наблюдения переменных звезд в созвездин Sagitta

K311 5008	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
K311 4786	100 4.00 4
MD GW	1.8 10.3 10.3 10.3 10.3 11.7 11.7 10.1 10.1 10.1 10.1 10.1 13.8 13.8
5	11.8 1.0 2.0 2.8 2.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SS	4.4.7.4.8.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
FY	6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9
FX	22222244222222224442222222444222222224442222
FU	44000000-1450400000000000000000000000000
EG	0.000000000000000000000000000000000000
DP	26.55 26.55 26.55 27.56
DG	12.6 6.7 13.7 14.4 17.6 19.2 17.7 17.6 17.6 17.6 17.6 17.6 17.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18
BD	2.7.1 2.7.1 2.7.1 2.7.1 2.7.2 2.3.3 2.3.4 2.3.4 2.3.4 2.3.5 2.
JD hel	243 7118.403 7136.497 7159.297 7160.360 7164.381 7165.317 7166.371 7166.371 7166.371 7166.371 7166.371 7166.371 7166.371 716.385 7196.298 7220.217 7220.237 7220.341 8144.501 8227.394 8227.394

5.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
6.9 17.6 17.6 18.9 18.9 18.1 18.6 18.6 18.6 18.6 18.6 18.6 18.6
2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
0.00 0.00
4.88.99 8.99.89.89.89.89.89.89.89.89.89.89.89.89
19.6 19.6 19.6 19.6 18.1 17.0 19.9 19.9 19.6 19.6 19.6 19.6 19.6 19.6
99999999999999999999999999999999999999
8.12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
24.5 111.1 12.5 111.6 111.6 111.6 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
8.5.4 17.1 17.1 17.0 17.0 17.0 17.0 18.6 18.6 18.6 18.6 19.7
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
243 8281.309 8282.265 8554.488 8653.458 8663.458 8669.220 8673.305 .345 8697.219 8699.219 8699.219 8899.428 8910.405 8916.416 8916.416 8916.416 8916.416 8917.477 8977.477 8977.477

199 Продолжение табл. 86

_	
K3T1 5008	0.4.2.0.4.0.0.4.4.4.4.4.0.0.0.4.4.0.0.0.4.0.0.0.4.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0.4.4.4.0.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0.0.4.4.4.4.0.0.0.0.4.4.4.0.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0.0.4.4.4.0.0.0.0.0.4.4.4.0.0.0.0.0.4.4.4.0.0.0.0.0.4.4.0.0.0.0.0.0.4.4.0
K311 4786	16.4 19.9 19.9 19.9 19.9 19.1 19.1 19.1 19
M D	13.3 13.3 10.1 10.1 10.1 12.6 14.4 14.4 15.0 12.0 12.0 12.1 12.1 12.1 12.1 12.1 12
15	2.2. 2.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0.
SS	0.86 0.86 0.77 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
FY	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3
FX	244969699999999999999999999999999999999
FU	01473444444466666666666666666666666666666
EG	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
DΡ	23.6 23.6 23.6 23.6 22.3 23.3 23.5 24.0 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7
DG	17.6 14.9 17.4 17.4 17.4 17.4 17.8 18.1 18.1 18.1 18.1 18.4 18.4 18.4 18
DD	44.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
JD hel	243 9292.478 9292.478 9292.412 9301.435 9301.435 9323.407 9332.500 9334.301 9345.302 9345.302 9385.298 9387.322 9387.323 9387.353 9387.353 9387.353 9387.353 9387.353 9387.353 9387.353 9387.353 9387.353 9646.502 9646.502 9647.480 9652.472 9664.477 9684.477 9688.477 9688.477

	5.2 2.2	21	5.7		4.4	/.c	13	1 <u>9</u> 1	5.7	4. 8.	8.8	18.0	5.7	5.7	2.5	2.7	4:8 8:4	4.8	4.2	4. ∞. i	5.7	2.7	4.4	4.8 8.9	4. 8.	5.2	7.5	10.5	6.2	6.3	, C	7.0	4. π 2. α	9 10	;
	6.0 10.4	6.6	7 OC	0 u	7. 1.	0.0		6.7	9.4	 	8. 1.	7.3	9.9	5.1	8	9.9	6.7	6.9	7.9	7.9	7.9	8.4	7.5	7.5	7.7	7.9	<u></u>	10.8	8.7	10.4	7.1	7.1	10.4 7.4	3	
	æ 1	1 7	7.I:	2.5	17.1	6./1	4 3	13.1	8.0	9.1	1.1	1.4	15.0	11.7	1:1	11.5	11.5	12.6	0.11	11.7	13.8	7.3	9.1	11:1	9.1	14.4	3.6	2.7	13.3	13.8		2.7	11.1	12.1	į
	0:0 0:0	—1:0: —	0.0	0.0	0.5	2.	6	0.0	0.0	0.0	0.0	0.0	0:1	0.0	-1.0	1.2	4.2	1:0	0.0	3.6	8. 9.	0.0	1.0	0.1	3.2	1.0	4.7:	3.5	4.2	0.0	c	77.0	<u> </u>	2.1	1
	7.6 2.0	1		4.5 C.4	4. 0	7.5	10.6	5.1	4.5	4.5	4.5	3.4	3.4	3.7	3.7	4.5	4.5	3.7	11.7	(12.8	$\frac{11.9}{2}$	4.5	3.4	3.7	3.4	4.5	(2.6	9.7:	4.7	3.4	,	 	у. Б]
	6.4 20.0	1		17.9	15.6	19.0	1	21.4	17.0	19.9	17.0	18.1	8.7	14.3	17.4	20.3	17.0	13.2	19.9	20.3	19.2	18.8	19.6	20.3	20.5	17.0	14.4:	18.1	20.3	11.9	7	0.71	20.5	10.0	1
	15.6 0.0	2.4	0.0	0.0	6.2.0	7.0	2.2	5.9	10.2	2.4	2.9	3.7	5.9	16.2	10.5	5.9	5.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	9.3	14.7	19.5	2.9	2.9	c		4. 6	7.0	ļ
	3.6 0.0	1	36	9.	4. 0	3.0	9.0	5.1	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	2.4	14,9	5.4	5.4	12.8	21.9	10.7	9.9	3.6	2.4	8:	2.1	2.4	-			9.0	l
	0.0	3.1	0.0	0.0	0.5	0.0	1	1.0	0.0	0.0	0.1	4.2	0.0	0.0	0.0	5.8	13.6	28.3	0.0	0.0	0.0	30.4	21.2	8.3	5.5	1.0	0.0	1.2	2.8	2.8	•	0.0	0.0	0.0	0.0
	24.9 25.7	1	25.7	11.3	16.5	6.9	19.5	23.8	25.7	24.9	25.7	24.9	22.2	24.0	25.7	21.6	23.5	25.7	25.0	24.6	24.6	24.6	25.9	24.0	24.9	24.4	25.7	23.6	25.7	24.6	ì	12.5	23.6	23.0	l
	8.9 13.3	1	18.4	15.9	18.4	14.9	18.1	17.1	20.7	12.4	9.1	9.5	14.9	18.4	18.0	18.0	17.4	17.6	12.4	14.6	12.4	20.7	20.7	18.4	18.4	9.5	13.3	9.2	17.4	7.4	e c	9.5	19.7	18.4	l
	7.6	9.9	2.8	3.7	3.1	3.7	<u>.</u>	1.5	8.1	11.2	3.1	89	1.8	3.1	7.6	8.2	8.6	2.8	3,4	8:1	2.3	1.2	0.0	0.0	2,3	6.4	2.0	3.7	5.6	7.6	•	Ø.	0.0	2.8	:
243	9706.409 9707.305	.343	9708.348	9711.378	9712.345	9714.340	9716.431	9730.312	9743.427	9745.402	9746.414	9764.351	9765.262	308	9765,359	9767.260	906	323	9769.251	.296	.341	9770.235	279	325	.370	9772.289	9968.529	.553	9974.542	9999.414	244	0007.422	0033.485	0036.456	003/.426

99 Продолжение табл. 86

ҚЗП 5008	0.000000000000000000000000000000000000
КЗП 4786	2.00.00.00.00.00.00.00.00.00.00.00.00.00
αM	9.1 10.3 12.6 12.6 12.7 1.7 1.7 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
GT	24.0001022100000000000000000000000000000
ß	8.8.4.8.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8
FY	20.3 21.4 20.3 21.4 20.9 21.4 20.9 21.4 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6
FX	482000000000000000000000000000000000000
FU	22.9 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
EG	000 000 000 000 000 000 000 000 000 00
DP	23.4 23.13.3 23.13.3 23.2 23.2 23.2 23.2 23.
DG .	6.20 6.20
ΩΩ	17.1 17.3 17.3 17.3 17.3 17.3 17.3 17.3
JD hel	244 0071.461 0072.464 0086.302 0093.469 0098.362 0097.504 0098.362 0117.432 0117.432 0117.432 0119.269 0125.312 0125.312 0125.312 0125.312 0125.312 0125.312 0125.313 0420.524 0421.453 0420.534 0427.475 0427.475 0427.475 0427.475 0427.475 0427.475 0427.475 0427.475 0427.475 0427.475

5.7 7.9 7.9 8.9 8.9		6.3 6.3	بن 7 د	0°0 0'0	2.2	6.3	7.0	5.2	5.7	17.4	5.7	5.7	2	5.7	က်	4.2		5.7	6.3	0.9	5.7	16.5	5.7	5.7	7.0	5.7	5.7	5.7
8.8 9.4 12.5 7.9	9.4	8.2	8.5	9.9 4.0	7.3	8.5	9.9	9.4	3.4	7.3	5.1	3.8	4.7	4.2	4.9	13.4	16.4	11.4	9.4	12.0	11.2	10.4	9.4	9.4	9.4	10.6	11.7	10.4
15.0 8.0 6.1 6.1	. 4.7. 4.4.0	9.1	11.5	4. 5	0.0 0.0	9.1	9.1	6.1	9.1	14.1:	10.4	8.0	7.8	8.0	13.1	(6.1	 	5.0	11.5	9.1	3.0	16.2	7.1	7.1	14.4	14.4	11.1	11.2
0.0 1.2 0.0 0.0	6 0	5.1 15.6	0.0	-5.0 -	0.1	2	0.0	-2.0	2.1	2.1	3.6	1.0	-1.0	3.2	0.0	7.0:	0.0	0.11	0.0	3.6	0.0	100	0.0	10.6	5.7	0.0	5.8	8.5
6.044. 4-555	3.4	 	11.8	4.2	4.0 4.0	. 4	4	5.5	(12.8	3.4	3.4	4.5	3.4	10.7	3.4	3.4:	2.5	4.1	4.5	4.1	7	2	4.5	4.2	14	. 6	4.5	3.7
13.6 14.5 19.5																												
2.9 2.9 6.7	2.2.0 0.0.0	0, 60 0, 60	2.4	5.9	2.9		7.0 V	4.5 4.0	i œ	5.6	9.6	0	, c	6	o	5.0	3.7	5.6	5.6	5.9	66	0	-	3.7	. 6	- O	6.2	2.9
7.2 7.2 3.6 4.6	5.7	3.6	5.0 4.0	3.6	3.6	4.5	14.9 9.6	0.9	, r	- u	9.4 9.4		20.4.0	* 9 * 6	5.6	r od i od	7.4	. 6	9 0	4.5	. c	r 4	o u	9,0) ; ;	# Y 7) (C	13.0
6.0 0.0 0.0 0.0	0.0 0.0	2.0) O O	0:0	0.0	0.0	9 e	0.0	9 0	2.1.2	0.0	900	9.0	0.0	900	9.0	3.5	9.0	9 6		9 6	0.0	0.0	9.0	9.	2.5) C	22.8
9.3 17.3 25.2 24.9	24.9 9.7	10.6	23.6 20.5	21.6	14.9	21.3	22.2	18.5	24.6	25.7	15.5	24.9	0.6	8.69 8.00	6.22	24.0	23.5	21.3	8.71	0.60	23.0	23.8	24.0	12.5	16.1	22.6	1.0.1	20.5
17.6 21.4 8.5 8.1	19.7	13.3	15.9	10.4 20.7	13.3	10.0	5.9	17.1	18.4	10.6	17.1	12.4	21.0	20.8	19.7	Σ, ί	. 6.7	19.7	19.7	4.7	20.7	6.7	19.7	15.4	13.3	16.5	12.4	16.5
2.8 16.6 3.7	. 60. c	. e.	9.6	× 0	9.6	8.9	2.3	1.8	6.4	6.2	2.8	21.7	1.8	13.5	3.4	2.8	13.3	2.3	5.5	7.3	-2.0	2.8	18.7	7.3	6.0	2.3	2.3	 5.5
244 0511.260 0512.311 0744.487																												

В Продолжение табл. 86

K3T1 5008		l 1	.c.	14.4	6.3	2.7	5.7	6.7	5.7	5.7	, r	7.0	- c). (6.1	6.1	5.2	9.5	6.3	r C		0.1	5.5	5.7	. ox	5.2
K3П 4786		:	11.4	10.3	10.4	7.3	9.4	12.2	11.2	10.4	10.3	2.0	1.0	0.21	#: ·	4.	8.4	9.4	6.8	9.4	7.3	? ?	4.0.4	10.4	7.2	7.7	10.9
ďΜ	_																										6.8
GT																											-1.0
SB																										•	•
FY						6.5																					
FX		5.0	7	; c	7.6	6.3	2.0	2.9	2.9	2.9	2.9	2.0	2.9	2.9	66	. ·	÷ c	6.3	!	2.4	2.0	2.9		r:7	3.3	4.9	3.7
FU		7.3	9.1	9.4	; e	5 6	* *	4.7	21.4	2.4	2.4	2.1	3.6	2.7	2.4	9	2 6) i	"	3.6	1.2	1.2	3.6) (۲.3	22.4	3.6
EG						00																					
ΩD						95.7																					
DG						181																					
ממ		5.6	2.3	5.7	7.6	8	7.3		0:0	0.0	17.1	5.6	3.4	4.6	6.0	7.3	4.6	01-	7 6		4.0	4.6	6.8	0.0		7.	2.8
JD hel	244	1514.499																•							,		

244												
1597.288	6.8	12.6	11.6	0:0	2.4	2.8	18.5	3.4	3.2	13.0	11.6	19.1
1598.297	6.8	17.4	12.5	0.0	0.9	2.9	10.9	3.4	1.0	11.0	9.4	5.7
1803.533	l	19.7	21.3	2.0	2.4	2.4	15.0	5.6	0.0	4.6	9.4	5.7
1813.520	1	8.9	22.2	1.2	3.6	2.9	20.5	4.5	-1.0	13.3	5.6	5.2
1837.458	i	17.0	22.6	0:0	1.8	3.7	17.9	11.8	0.0	7.8	8.2	6.1
1838.517	1	17.4	10.7	1.2	2.1	2.0	19.2	3.4	1.9	11.1	10.8	5.2
1839.505	ı	17.3	11.1	0:0	12.5	2.0	15.0	3.7	0.0	10.1	7.1	5.2
1842.497	1	18.4	16.5	0.0	2.4	2.9	20.5	3.7	0.0	4.8	6.3	5.2
1860.473	J	18.1	12.5	0.0	3.6	2.7	20.3	2.2	0.0	9.1	9.4	5.7
1864.494	ı	16.0	24.6	3.4	2.4	3.7	9.4	3.1	1.9	11.1	12.9	5.2
1865.520	l	20.7:	22.2	0.0	1.8	3.7	19.2	4.5	0.0	6.8	13.4	4.8
1869.494	l	18.1	23.6	4.2	2.1	2.9	17.9	4.5	0.0	8.0	11.2	5.2
1873.506	ı	20.8	22.2	1.0	7.3	2.9	9.61	3.4	3.6	10.6	12.0	5.7
1875.516	1	9.4	25.4	0.0	11.9	5.9	20.3	3.4	4.2	13.1	12.4	5.2
1887.411	ı	22.6	16.5	8.1	2.4	2.4	20.3	2.0	2.8	9.1	12.9	0.9
1892.451	1	20.7	24.9	1.8	7.3	8.1	18.8	7.4	2.1	10.6	14.1	5.7
1901.458	1	18.1	11.6	0.0	4.5	4.9	10.9	3.7	2.1	9.1	14.8	5.7
1902.530	1	7.7	15.8	28.9	1.8	2.7	11.8	9.9	3.8	7.1	15.5	4.8
1916.380]	10.6	ı	0.0	3.6	3.7	9.5	3.4	-1.0	9.1	15.5	6.7
1918.441	1	19.7	24.6	2.0	4.8	3.3	20.3	4.5	(18.0	9.1	15.7	5.2
1922.448	ı	17.6	20.5	0.0	4.6	15.5	20.3	3.4	5.3	10.1	16.4	5.7
1924.416	1	7.1	12.5	1.6	16.6	3.3	7.3	4.2	-1.0	13.1	17.4	4.8
1928.395	ı	17.0	11.5:	i	I	l	ı	1	l	ı	J	5.7
1931.452	}	19.7	22.6	5.8	3.6	2.9	16,0	3.7	2.8	10.8	18.4	6,3

Эти наблюдения обработаны нами совместно. Обнаружено десять моментов ослабления блеска:

Момент ослаб- ления блеска	E	O C	Момент ослаб- ления блеска	E	O-C
2432797.283 3033.534 3447.439 3448.379 7163.358	508 1398 1400 9388	+0.000 004 011 002 + .001	2437176.381 40512.310 0819.266 1475.468 1564.312		+0.002 014 004 016 .000

Остатки О — А вычислены относительно формулы

Min hel JD = $2432797.283 + 0.4650697 \cdot E$; $P^{-1} = 2.150215333$.

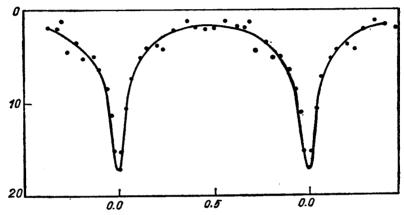


Рис. 53. Кривая изменения блеска UU Sagittae.

Эта же формула использована при выводе средней кривой изменения блеска, приведенной в табл. 87 и на рис. 53. Она построена по наблюдениям В. Безденежного.

Таблица 87. Средняя кривая блеска UU Sagittae

Фаза	s	n	Фаза	s	n	Фаза	s	n
0 ^p .010	15.3	5	0 ^p .409	1.7	10	0 ^p .812	5.3	10
.041	10.5	5	.460	2.1	10	.860	5.1	10
.069	7.3	5	.501	2.0	10	.899	6.5	10
.115	5.2	10	.556	1.3	10	.934	8.6	5
.148	4.3	10	.626	1.9	10	.957	11.2	6
.202	3.8	10	.669	2.1	10	.971	15.2	4
.239	4.2	10	.696	1.4	10	.997	17.2	2
.295	2.1	10	.729	4.4	10		*	
.358	1.3	10	.773	3.6	10			

DG Стрелы (Sagittae)

Звезда относится к цефеидам. По формуле Рихтера [21]

Max JD =
$$2436724.370 + 4.437270 \cdot E$$
; $P^{-1} = 0.2253638$

выведены две средние кривые изменения блеска по московским и симеизским наблюдениям раздельно. Они приведены в табл. 88 и

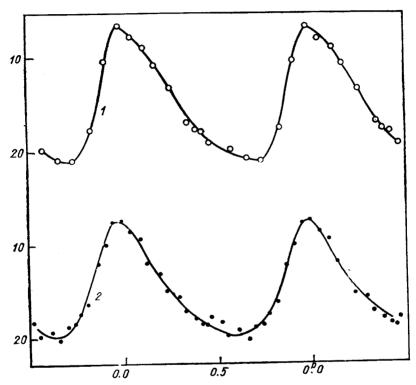


Рис. 54. Кривая изменения блеска DG Sagittae:

на рис. 54. Из этих средних кривых получены моменты максимума, которые показывают, что формула Рихтера пока не нуждается в исправлении:

Источник	Max JD	E	0-C
Симеиз	2433147.820	-806	→0.110
Рихтер	6724.370	0	.000
Москва	9706.038	+672	→ .177

Наблюдения приведены в табл. 78, 86.

Таблица 88. Средние кривые блеска DG Sagittae

Фаза	s	n	Фаза	s	n	Фаза	s	n
Симеизска	IЯ	•	 -		·	· · · · · ·	· · ·	
0p.042	7.9	5	0p.382	17.6	5	0 ^p .725	21.0	5
.112	9.1	5 5 5 5	.414	17.9	5 5 5 5 5	.823	17.6	5
.165	10.8	5	.4 58	19.1	5	.904	10.4	5
.248	13.3	5	.569	19.8	5	.978	6.8	4
.341	16.9	5	.650	20.8	5			
Московска	я							
0P.034	8.6	10	OP.415	18.4	10	0P.739	18.4	10
.088	9.4	10	.436	18.5	10	.766	17.3	10
.126	11.8	10	.462	17.8	10	.807	16.2	10
.190	12.9	10	.514	18.4	10	.864	12.0	10
.228	15.0	10	.550	19.7	10	.898	10.0	10
.290	15.6	10	.604	19.4	10	.946	7.6	10
.324	17.1	10	.660	20.1	10	.988	7.4	8
.378	17.8	10	.694	18.9	10			-

DP Стрелы (Sagittae)

Звезда типа RR Лиры. Автор ранее [4] уже исследовал эту звезду. Теперь получены дополнительные наблюдения на московских снимках. Использованы прежние звезды сравнения, но степенная шкала переведена в звездные величины по формуле $m=13.17+0.0779\cdot s$, где s— оценки блеска в степенях. Построены сезонные кривые блеска, из которых определены следующие моменты максимума (к списку добавлен момент, определенный Рихтером [21]):

Источни	Max hel JD	E	O A	$O \hookrightarrow B$	O — C
Рихтер	2427985.464	0	0.000		
Симеиз	32855.179	9972	006	0.012	·
•	3160.404	10597	→ .006	+ .004	
Одесса	6400.486	17232	044	→ .009	
Москва	7160.357	18788	030	+ .014	
>	7528.541	19544	— .030	+ .018	_
»	8623.378	21784	 .074	.013	
»	8916.421	22384	.034	+ .030	
>	9379.322	23332	079	— .010	
Одесса	9404.234	23 383	— .073	003	_
Москва	9714.33 4	240 18	068	+ .005	_
>	40511.282	25 650	— .090	008	
>	0775.471	26191	093	008	-0.001
»	1576.284	27831	. .157	→ .062	+ .004
>	1901.484	28497	191	092	→ .002

Остатки О — А вычислены относительно формулы

Max hel JD = $2427985.464 + 0.4883395 \cdot E$.

Эта формула, по-видимому, справедлива в интервале 2427985—2433000. После этого период изменился (уменьшился) и в интервале 2433000—2441439 справедлива формула

Max hel JD = 2432855.191 + 0.4883339 (E - 9972).

Новая формула также перестала удовлетворять наблюдениям, начиная с момента 2440775. Остатки О — С вычислены относительно формулы

Max hel JD = 2440775.472 + 0.4882977(E - 26191).

Таким образом, период за время, охваченное наблюдениями, сократился дважды: один раз — на 0.00000557 суток, а вторично — на

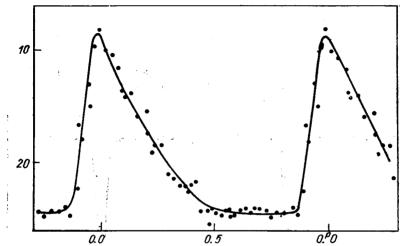


Рис. 55. Средняя кривая блеска DP Sagittae.

0.0000363 суток. Между двумя последними сокращениями периода протекло около 16 тысяч циклов колебаний.

Несмотря на изменяемость периода, была построена единая средняя кривая блеска (табл. 89, рис. 55). Фазы вычислялись внутри каждого интервала времени относительно подходящей формулы.

Таблица 89. Средняя кривая блеска DP Sagittae

		•	•		-			
Фаза	s	n	Фаза	ς	n	Фаза	5	n
0 ^p .013	9.9	5	0º.387	22.5	5	0 ^p .672	24.1	5
.044	10.5		.396	22.0	5	.697	24.2	5
.071	11.7	5 5 5	.414	21.7	5	.724	24.4	5
.090	13.7	5	.441	24.4	6	.745	24.8	5
.104	14.1	5	.472	24.3	5	.775	24.4	5 5 5 5 5
.127	14.0	5 5	.483	25.4	5	.812	24.4	6
.164	15.9	5	.494	24.2	5	.845	24.0	5 5
.192	15.5	5555555	.508	24. 4	5	.863	24.7	5
.207	17.4	5	.532	24.5	5	.886	22.4	4
.224	19.2	5	.546	24.2	5	.898	16.7	4
.237	18.5	5	.559	24.2	5	.914	17.9	4 5 5 5 5 3
.267	18.5	5	.574	24.8	5	.938	13.1	5
.294	21.2	5	.589	24.7	5	.948	15.1	5
.314	21.4	4	.610	24.2	5	.967	9.6	5
.347	22.0	4 5	.635	24.1	5	.985	8.1	3
.371	22.1	5	.658	24.4	5			

EG Стрелы (Sagittae)

Звезда относится к типу Алголя. На московских снимках, как старых, так и новых, обнаружено семь значительных ослаблений блеска, которые могут быть представлены формулой

Min hel JD = $2439770.233 + 2.8815 \cdot E$, согласно следующей сводке:

Момент ослаб- ления блеска	E	OC	Момент ослаб- ления блеска	E	0-0
2428045.38	4069	0.03	2439770.23	0	0.00
8751.40	3824	+ .02	41568.30	+624	+ .01
9169.23	-3679	- .04	1902.53	- 740	.01
39767.35	- 1	.00		•	

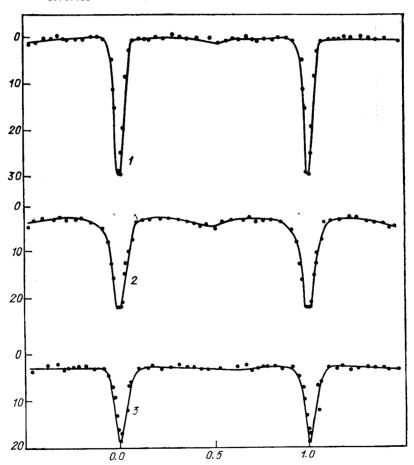


Рис. 56. Кривые изменения блеска EG (1), FU (2), FX (3) Sagittae.

Средняя кривая блеска изображена на рис. 56 и приведена в табл. 90, а наблюдения — в табл. 86, 91.

Таблица 90. Средняя кривая блеска EG Sagittae

Фаза	s	n	Фаза	s	п	Фаза	s	n
0P.0004 .0070 .0176 .0332 .0498 .0677 .1043 .1312 .1561 .1870 .2306	29.4 24.9 19.5 8.4 3.0 0.7 0.5 0.4 0.5	2 2 4 5 6 10 10 10 10	0P.2820 .3249 .3551 .4049 .4778 .5184 .5622 .5987 .6306 .6787 .7007	0.2 0.1 0.4 0.3 0.5 1.4 1.2 0.3 0.4 0.0	10 10 10 10 10 10 10 10 10	0P.7258 .7734 .8084 .8449 .8835 .9159 .9642 .9731 .9832 .9952	0.7 0.5 0.6 0.0 0.1 0.8 5.0 11.3 15.2 28.9	10 10 10 10 10 10 4 4 3

Таблица 91. Московские наблюдения звезд созвездия Vulpecula

1 аолица	a 91.	MIOCKUE	CKHC H	олюдени	и звезд соз.	ж	· a.poo.		<u> </u>
JD hel	EX	GH	HU	н۷	JD hel	EX	GН	ни	н۷
243					243				
7118.403	7.3		2.1	12.9	8281.309	6.2	7.8	8.6	20.8 .
7136.497	5.4	6.7	6.0	9.2	8282.265	6.2	6.8	7.6	20.2
7159.297	5.4	4.9	8.4	17.9	8554.488	6.2	7.8	5.7	9.4
7160.360	6.2	5.2	1.5	16.3	8561.407	6.2	7.8	5.2	18.9
7163.362	4.7	5.6	8.4	11.8	8623.458	6.2	7.8	<u></u>	40.0
7164.381	6.2	6.8	10.1	19.1	8668.347	6.2	6.9	8.5	10.3 <u>1</u>
7165.413	4.4	6.2	1.9	10.3	8669.220	5.4	6.8	8.6	18.7
7166.371	4.4	6.1	4.3	16.0	8673.305	5.4	7.8	4.8:	12.5
7168.424	4.4	7.8	7.8	13.2	.345	4.8	6.8	5.7	9.4
7175.366	6.2	7.8	9.5	20.3	8697.219	5.4	6.9	5.7	20.8
7176.385	-	5.9	8.4	9.2	8698.219	4.8	6.1	7.8	18.2
7194.361	6.2	7.8	4.8	16.4	8699.250	4.8	6.8	8.7	19.8 13.5
7196.298	4.7	6.9	4.8	19.8	8703.219	6.0	7.8	$\frac{3.8}{5.2}$	19.3
7220.217	5.4	6.5	2.4	19.1	8880.522	5.4	6.9	5.2 6.9	20.8
7223.211	4.7	6.9	11.5	18.9	8886.501	6.8	7.8	8.5	20.8
7528.540	6.2	7.8	 .		8905.463	6.0	6.7	o.o —	20.0
7546.40 1	5.4	7.8	8.4	18.7	8909.428	5.9	6.9	2.8	19.3
7549.496	6.2	-	-		8910.405	5.4	6.9	7.6	19.8
7 576.321	4.7	7.8	11.5	17.7	8913.484	6.0 4.8	6.8	3.2	20.8
7578.306	4.7	7.8	9.5	18.2	8916.416	4.8	9.7	11.5	20.8
7 843.49 4	4.4	6.8	9.5	20.8	8942.420	5.4	6.5	3.81	17.0
7876.519	4.4	9.7	8.5	19.8	8946.395	6.0	6.7	7.4	19.8
7877.459	6.2	7.8	9.5	18.7	8951.495 8964.443	6.0	7.8	7.4	13.5
7885.469	5.4	7.8	4.2	20.8	8968.463	34.3	6.8	8.6	20.8
7887.477	33.6	6.8	10.7	21.8	8970.520	5.4	6.8	9.5	19.8
7902.341	6.2	9.3	9.5_{-5}	16.0	8972.464	5.4	6.8	6.7	17.9
8144.501	5.4	7.8	9.5	20.8 16.1	8974.482	4.8	7.8	9.5	7.2
8227.394	5.4	6.8	9.5	18.5	8977.477	5.4	7.8	9.5	15.6
8261.464 8268.430	$6.2 \\ 6.2$	7.8 9.5	$9.5 \\ 12.5$	18.5	8979.496	7.3	7.8	5.3	6.3
0200.500	0.2	0.0							

JD hel	EX	GH	HU	н۷	JD hel	EX	GH	HU	HV
243				_	243				<u> </u>
8980.494	4.8	7.8	7.6	20.8	9769.251	- 4			
8999.432		7.8	7.4	20.8	.269	5.4	7.3	8.6	19.0
9236.537		7.8	8.5	5.2	.341	5.9	7.8	9.5	19.8
9237.547		6.8	9.5	21.8	9770.235	5.9	7.8	11.5	19.8
9269.511		6.8	4.8:		.279	5.9	7.3	9.5	20.8
9292.478		7.8	-1.0	15.6	.325	5.4	6.8	10.5	21.8
9294.412		6.7	6.7	20.8	.370	5.0	7.3	7.4	10.3
9301.435		7.8	11.5	20.3	9772.289	5.4	7.3	0.0	10.3
9323.497		6.8	8.5	12.2	9968.529	4.8	7.8	4.3	20.3
9329.500		7.8	7.6	17.9	.553	31.9 31.6	$\frac{7.8}{7.3}$	<u>ب</u>	20.8
9334.508		7.8	8.5	13.37	9974.542			9.5:	16.6
9344.301		6.7	9.5	19.8	9999.414	4.8 6.5	7.3	7.6	13.8
9346.302		7.8	2.1	15.6	244	0.0	7.3	11.4	20.8
9379.322		7.8	8.3	8.4	0007.422	7.8	7.0	10 5	10.5
9382.298		6.8	2.1	8.2	0033.485	32.2	7.8	10.5	18.7
9383.453		7.8	~	U.Z	0035.465	5.9	7.3	7.4	19.8
9384.315		6.5	8.5	20.8	0030.436	5.9	7.3	—	— .
9385.293		6.8	9.5	17.9	0037.420	5.9	6 0	7.4	· -
.382		6.8	9.5	19.8	0072.464	5.9	6.8	7.4	17.0
9387.353		7.8	3.8	11.5	0086.302		6.8 7.8	1.7	17.0
.407		7.8		15.6	0093.469	5.4 5.9	6.8	7.4	17.3
9391.376		7.8	8.5	19.8	0094.424	5.4	7.8	9.5	19.3
9406.302		5.9	7.6	18.9	0096.306	7.3	6.7	9.5	19.8
9646.502		7.8	4.8	16.6	0097.504	30.9	7.8	9.5	10.3
9647.480		7.8	6.3	18.9	0098.362	16.1	6.8	9.5	10.3
9652.472	5.4	7.8	1.9	19.6	0117.432	5.0	7.8	11.5	8.0 18.9
9655.489	5.4	7.8	9.5	19.8	0118.276	5.4	6.8	9.5	17.6
9677.480	6.0	6.8	4.8::	19.6	0119.269	5.9	7.8	11.9	19.0
9678.458	33.2	7.3	-	18.7	0122.294	5.9	7.8	7.8	10.3
9681.477	5.4	6.8	4.0:	18.7::	0123.278	5.9	6.8	8.6	19.0
9684.497	5.4	7.8	6.7:	18.7	0125.312	5.4	7.8	3.2	17.3
9686.467	5.4	7.3	9.5	17.9	0153.197	5.4	7.8	8.6	20.8
9689.471	6.0	7.3	4.0	19.6	0157.360	5.4	6.8		18.9
9704.329	5.4	11.1	9.5?	18.7	0386.512	5.4	6.8	7.4	10.3
9706.409	5.4	6.8	4.8	21.8	0387.500	5.4	9.0	6.1	17.0
9707.305	6.0		_		0420.524	33.0			
.343	6.0			_	0421.523	5.9	_		
9708.348	5.4				0425.469	5.9			
9711.378	5.7	7.3	9.5	20.8	0426.397	5.4	7.8	-	10.3
9712.345	5.4	7.8	-1.0	20.8	0427.475	5.9	7.8	7.4	18.7
9714.340	5.9	7.3	-	20.8	0428.460	6.0	7.8	7.4	7.2
9716.431		7.3	<u> </u>		0473.343	4.8	7.8	7.4	21.8
9730.312	5.9	7.3	0.0	19.8	0475.305	4.8	7.8	3.5	20.3
9743.427	14.2	7.3	7.4	16.6	.341	4.8	7.8	5.3	19.8
9745.402	6.0	7.8	9.5?	19.8	0502.251	6.0	6.8	8.5	21.8
9746.414	5.4	7.3	$\frac{2.0}{0.7}$	8.2	.287	5.4	6.8	9.5	19.0
9764.351 9765.262	4.8	7.3	6.7	19.8	0509.241	5.4	7.8	8.3	19.8
.308	5.4	6.8 7.8	7.4	19.0	0510.285	5.4	7.3	4.3:	19.8
.359	6.0	7.8 7.8	1.1	10.3	0511.260	5.4	7.3	4.3	12.5
9767.260	5.4 5.4	7.8 7.8	$\frac{3.5}{7.1}$	10.3	0512.311	5.9	6.8	7.4	21.8
.306	5.4	7.3		19.8	0744.487	5.9	7.8	9.5	
.353	5.9	6.2	$\frac{9.5}{7.4}$	$\frac{20.3}{18.9}$.510	6.0	7.8	7.6	21.8
.000	5.0	0.2	1.4	10.9	0747.509	6.0	6.8	-	20.8

•									
JD hel	EX	GH	нU	HV	JD hel	EX	GH	HU	HV
244 0775.46 0779.370 0783.478 0799.500 0800.518	4.8 7.3 5 5.4	7.8 7.3 7.8 6.8 7.8	4.2 9.5 9.5 5.7 7.6	13.8 20.8 18.5 20.3 20.8	244 1565.329 1566.320 1567.338 1568.306 1569.311	34.0 3 5.9 5 5.9 1 5.9	6.8 7.8 6.8 6.8 7.3	8.5 1.1 6.3 7.4	20.8 16.0 20.8 16.4 19.8
0801.416 0802.45 0806.42 0808.33 0809.54 0810.37	5.4 7 5.4 4 5.9 0 21.0 0 5.9	6.8 7.8 7.8 6.8 7.3 6.8	8.5 9.5 9.5 9.5 6.7 6.7	5.6 19.8 19.8 20.8 19.8 18.9	1570.311 1571.337 1573.322 1575.353 1576.284 1577.390	7 5.9 2 5.9 3 5.9 4 5.9 5.9	6.8 6.8 	1.2	20.8 - 15.6 19.8
0812.53 0819.27 0822.34 0823.43 0827.40 0828.46	9 5.4 0 5.9 2 5.9 6 9.2 7 5.0	6.8 7.8 7.8 7.8 7.8 7.8	6.7 	21.8 19.8 19.8 22.8 19.8	1594.26 1595.27 1596.26 1597.28 1598.29 1803.53	5.9 5.9 8 7.6 7 32.8 3 5.4		9.5 8.3 4.8 8.5 2.1	20.3 12.5 20.3 13.2 19.8 10.3
1161.54 1177.45 1417.54 1427.54 1452.52 1454.49	0 5.9 8 5.4 6 5.4 1 5.9	6.8 7.8 6.8 7.8 7.8 7.8	3.2 11.9 9.5 10.5 5.7	18.7 6.0 22.8 15.6 8.8	1813.524 1837.454 1838.51 1839.50 1842.49 1860.47	8 5.0 7 4.4 5 6.0 7 5.4 3 5.4	7.8 7.8 7.3 7.3 7.3	9.5 4.0 5.9 8.2 9.5	19.8 20.8 20.8 19.8 18.9 19.8
1475.47 1482.51 1486.47 1492.54 1508.35 1510.48	1 5.0 0 5.4 6 5.9 2 5.4 57 5.9	7.8 6.8 7.8 6.8 7.8 7.8	9.5: 9.5 9.5 7.8 6.3	19.8 19.8 14.5 19.3 15.6 20.8?	1864.49 1865.52 1869.49 1873.50 1875.51 1887.41	0 5.9 4 5.0 6 5.9 6 5.9 1 5.4	7.3 7.3 6.8 9.0 1 9.0	6.3 1.2 9.5 9.5	22.8
1513.48 1514.49 1518.50 1522.52 1530.29	88 5.4 99 5.9 92 5.9 92 5.9 97 5.9	7.3 6.8 7.8 9.0 7.8	0.0 9.5 5.7 9.5 9.5	20.3 20.8 16.4 17.7 19.8	1892.45 1901.45 1902.53 1916.38 1918.44 1922.44	58 5.0 30 5.9 30 5.4 11 6.5	7.8 11.3 1 7.8 5 7.8 9 6.8	7.4 3 0.0 3 2.1 9.5 6.7	12.6 17.9 19.8 20.8 14.1
1536.52 1546.43 1548.4 1564.3	20 5.7 32 5.9 19 5.9	9.7? 1.3 17.8		18.7 22.3 20.8 20.8	1924.41 1928.39 1931.45	5.9	7.8	}	20.8 — 18.7

FU Стрелы (Sagittae)

Звезда типа Алголя. Моменты 19 ослаблений блеска, обнаруженных на московских снимках, хорошо представляются формулой

Min hel JD = $2440098.331 + 1.0616623 \cdot E$; $P^{-1} = 0.941919102$.

При выводе этой формулы использовались моменты, отмеченные восклицательным знаком:

177

Момент ослабления блеска	E	o-c	Момент ослабления блеска	E	o-c
2438913.484 8964.448 9769.251 9770.279! 40098.362 0117.432! 0426.397! 0427.475 0509.241 0510.285	-1116 -1068 - 310 - 309 0 + 18 + 309 + 310 + 387 + 388	0.032 028 +035 +002 +031 009 +012 +029 +047 +029	2440806.424 0822.342 0823.436! 1427.546! 1513.488 1546.432! 1595.270! 1839.505 1924.416	+ 667 + 682 + 683 +1252 +1333 +1364 +1410 +1640 +1720	0.036043010 +014039006005 +052 +026

Средняя кривая блеска приведена в табл. 92, а наблюдения — в табл. 86.

Таблица 92. Средняя кривая блеска FU Sagittae

					8			
Фаза	s	n	Фаза	s	n	Фаза	s	n
0 ^p .001 .012 .027 .035 .046 .067 .084 .119 .163 .216	21.9 21.2 14.6 12.4 10.0 7.3 3.6 3.1 3.0 2.7 2.6	1 2 4 2 5 5 10 10 10	0 ^p .315 .360 .400 .429 .463 .504 .544 .594 .653 .682	3.0 3.5 3.6 4.4 4.2 4.8 3.4 3.0 3.1 2.8 3.3	10 10 10 10 10 10 10 10 10	0 ^p .762 .799 .854 .906 .938 .961 .968 .991	2.9 2.8 3.6 5.1 7.9 12.5 15.8 21.9 21.9	10 10 10 10 5 5 3 2

FX Стрелы (Sagittae)

Звезда типа Алголя. Многочисленные ослабления блеска хорошо представляются формулой, полученной по моментам, отмеченным восклицательным знаком:

Min hel JD = $2439684.480 + 1.1547628 \cdot E$; $P^{-1} = 0.86597871$.

Момент Момент ослабления E О — С ослабления E блеска	O-C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.001 016 035 007 012 042 + .003 046 + .064 + .085

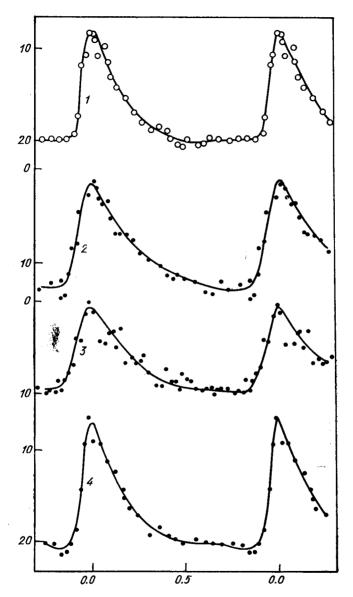


Рис. 57. Кривые изменения блеска звезд типа RR Лиры: 1 — FY Sagittae; 2 — GW Sagittae; 3 — HU Vulpeculae; 4 — HV Vulpeculae.

Средняя кривая блеска приведена в табл. 93, а наблюдения — в табл. 86.

Таблица 93. Средняя кривая блеска FX Sagittae

	<u>-</u>				3			
Фаза	s	n	Фаза	s	n	Фаза	s	n
o ^p .001	18.5	3	0 ^p .309	2.5	10	0 ^p .752	2.7	10
.006	16.8	3	.357	2.7	10	.780	2.5	10
.037	11.8	3	.394	2.7	10	.817	2.6	10
.049	6.5	5	.426	3.0	10	.860	3.0	10
.060	5.8	4	.467	3.1	10	.908	3.0	10
.104	2.7	10	.529	3.6	10	.947	4.6	4
.147	2.8	10	.616	2.5	10	.962	7.0	4
.174	2.4	10	.666	2.1	10	.972	9.3	4
.216	3.2	10	.699	3.3	10	.987	12.9	3
.262	2.7	10	.726	3.0	11	.992	15.9	. 2

FY Стрелы (Sagittae)

Звезда типа RR Лиры. Наблюдалась автором только на московских снимках. После отыскания предварительных элементов

Max JD =
$$2437118.403 + 0.534714 \cdot E$$

были построены сезонные кривые блеска и из них определены моменты на восходящей ветви кривой, когда блеск становится равным $14^s - T$ (14^s):

Момент
$$T$$
 (14) E O — C Момент T (14) E O — C 2437194.305 0 —0.002 2440475.304 6136 —0.001 8227.373 1932 + .001 1486.446 8027 — .001 9383.426 4094 + .004

Они позволили по способу наименьших квадратов улучшить формулу:

$$T(14^{\rm s}) = 2437194.307 + 0.5347129 \cdot E; P^{-1} = 1.870162474.$$

Таблица 94. Средняя кривая блеска FY Sagittae

			1 1			11		1
Фаза	s	п	Фаза	s	n	Фаза	s	n
0 ^p .005	11,6	5	0 ^p .231	15.4	10	0 ^p .648	20.2	10
.018	10.5	5	.278	16.9	10	.682	19.8	10
.042	8.3	5	.324	18.0	10	.731	19.8	10
.056	8.4	5	.374	18.7	10	.788	19.9	10
.067	9.0	5	.413	18.4	10	.840	19.8	10
.085	10.6	5	.459	18.8	10	.880	19.8	10
.126	9.8	5	.475	19.8	10	.924	19.8	10
.140	11.4	5	.508	20.3	10	.962	19.2	5
.155	13.0	5	.559	19.9	10	.979	17.3	5
.188	14.1	5	.611	20.4	10			

С ее помощью построена средняя кривая блеска (табл. 94), по которой определен момент максимума и найдены окончательные элементы:

Max hel JD = $2437194.332 + 0.5347129 \cdot E$

Наблюдения приведены в табл. 86.

GS Стрелы (Sagittae)

Звезда типа Алголя. Она очень слаба: на московских снимках в минимуме блеска эта звезда не видна. Обнаружено пять значительных

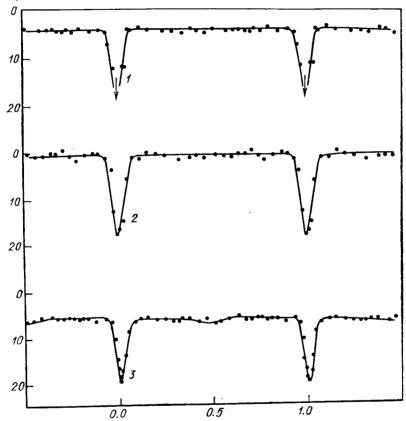


Рис. 58. Кривые изменения блеска звезд типа Алголя: 1 — GS Sagittae; 2 — GT Sagittae; 3 — K3П 5008.

ослаблений ее блеска, моменты которых приведены ниже. K ним добавлен момент, указанный Хофмейстером [15]. Все моменты представляются формулой

Min JD = $2439677.480 + 1.55616 \cdot E$.

Улучшение формулы по способу наименьших квадратов не производилось. Средняя кривая блеска показана на рис. 58 и приведена в табл. 95, а наблюдения — в табл. 86.

Таблица 95. Средняя кривая блеска GS Sagittae

Фаза	s	n	Фаза	s	n	Фаза	s	n
0 ^p .004 .022 .035 .053 .062 .104 .161 .235	(16.8 10.7 10.8 3.6 3.9 3.2 3.5 3.9 3.8	4 5 3 5 5 10 10 10	0 ^p .344 .387 .421 .470 .504 .580 .618 .646	4.2 3.5 3.7 4.3 3.5 3.8 3.8 3.7	10 10 10 10 10 10 10 10	0 ^P .701 .720 .758 .801 .855 .900 .931 .952	3.9 3.6 3.9 3.2 3.9 3.7 4.3 6.7	10 10 10 10 10 10 10 10

GT Стрелы (Sagittae)

Звезда относится к типу Алголя. На московских снимках обнаружено 12 ослаблений блеска, моменты которых приведены ниже. К ним добавлен момент минимума, который был определен Хофмейстером 1151. При выводе окончательной формулы использованы только те моменты, которые отмечены восклицательным знаком.

Момент ослабления блеска	E	0-C	Момент ослабления блеска	E	o-c
2437118.403 7160.360! 7546.401! 8979.496 9323.497 9388.42 ! 9686.467	- 11 0 +101 +476 +566 +583 +661	+0.061 021 + .023 038 + .006 041 091	2440072.464 0122.294! 0783.478 0802.457 1486.476 1918.441!	+ 762 + 775 + 948 + 953 +1132 +1245	-0.090 + .057 + .078 052 126 019

Остатки О — С вычислены относительно элементов

Min hel JD = $2437160.381 + 3.8217498 \cdot E$; $P^{-1} = 0.261660247$. Эта формула использована для вычисления фаз при выводе средней кривой блеска (табл. 96). Наблюдения приведены в таблице 86.

Таблица 96. Средняя кривая блеска GT Sagittae

Фаза	S	n	Фаза	s	n	Фаза	s	n
0 ^P .0036 .0189 .0416 .0713 .1145 .1564 .1980 .2448 .3188	16.4 14.6 5.7 0.8 0.9 -0.2 0.0 0.5 1.2	2 4 3 10 10 10 10 10	0P.3805 .4165 .4570 .5096 .5573 .6010 .6373 .6666 .7018	0.8 0.5 0.8 0.2 0.7 0.8 0.1 0.2 0.3	10 10 10 10 10 10 10 10	0 ^p .7382 .7760 .8177 .8672 .8918 .9273 .9561 .9749 .9920	0.5 1.7 0.4 0.0 0.1 1.1 3.7 12.4 17.2	10 10 10 10 10 10 5 5

GW Стрелы (Sagittae)

Звезда типа RR Лиры. После отыскания предварительных элементов построены сезонные кривые блеска и из них определены уверенные моменты максимума. Они, как видно из сводки моментов, связываются формулой

Max hel JD = $2437165.608 + 0.6380384 \cdot E$; $P^{-1} = 1.56730379$.

$$\begin{array}{cccccc} \text{Max hel JD} & E & \text{O}-\text{C} \\ 2437165.605 & 0 & -0.003 \\ 8964.243 & 2819 & + .005 \\ 40007.432 & 4454 & + .001 \\ 1417.494 & 6664 & - .002 \\ \end{array}$$

Сообщенные Хофмейстером [15] приближенные моменты максимума согласуются с нашей формулой; однако использовать их для улучшения элементов не имеет смысла — они слишком приближенные. Указанная выше формула использована для вычисления фаз при выводе средней кривой блеска (табл. 97). Наблюдения приведены в табл. 86.

Таблица 97. Средняя кривая блеска GW Sagittae

Фаза	S	n	Фаза	s	n	Фаза	s	n
0 ^P .017 .031 .047 .064 .085 .112 .134 .153 .192 .228	1.6 2.1 3.1 3.7 3.6 5.2 6.8 6.9 7.0 7.5 8.9	5 5 5 5 5 5 10 10	0 ^P .310 .370 .408 .445 .466 .501 .553 .618 .652 .693	9.6 10.3 11.4 11.7 11.4 11.7 12.0 13.1 13.3 12.0	10 10 10 10 10 10 10 10 10	0 ^p .800 .843 .852 .866 .888 .903 .922 .941	12.2 11.9 13.8 13.6 11.2 8.5 7.9 4.6 3.0	10 5 5 5 5 5 4 4

EX Лисички (Vulpeculae)

Звезда типа Алголя. Она открыта Романо [23], который вывел следующую формулу:

Min JD =
$$2436096.34 + 8.0684 \cdot E$$
.

Оказалось, что период надо удвоить, что было сделано Гайсслер [11]. Выведенная Гайсслер формула имеет вид

Min JD =
$$2427931.768 + 16.135211 \cdot E$$
.

Автор оценил блеск звезды на московских и одесских снимках и добавил к сводке Гайсслер еще семь моментов минимума.

Источник	Min JD	Ε	O - C	Источник	Min JD	Ε	O C
Гайсслер	2427931.53	506	-0.25	Гайсслер	2437871.46	+110	+0 22
»	8286.58	←484	19	Москва	7887.48	+111	+ .10
>	8432.40	- -475	+ .42	Одесса	7903.40		
>		 433	. .25	Гайсслер	8226.42		+ .20
»	30545.44	406	+ .11	»	8258.41	+134	· .08
>	3095.46	186	+ .32	»	8290.39	± 136	38
Москва	4628.31	— 91	+ .30	Одесса	8290.33	± 136	44
Романо	6096.34	0	.00	Гайсслер	8323.29	∔138	+ .25
Гайсслер	6725.45	+ 39	— .17	» *	8371.24		20
»	6757.51	+41	38	Москва	8468.46	+178	00
Одесса	7193.37	+ 68	18	»	41566.32	+339	
»	7548.34	+ 90	19				

Остатки О — С вычислены относительно новой формулы автора:

Min JD =
$$2436096.34 + 16.135485 \cdot E$$
; $P^{-1} = 0.0619752056$.

Эта же формула была использована при получении средней кривой блеска (табл. 98). Возможно, что период немного удлиняется.

Таблица 98. Средняя кривая блеска EX Vulpeculae

Фаза	s	n	Фаза	s	n	Фаза	s	n
0 ^p .0004	32.4	2	0 ^p .3334	5.3	10	0 ^p .7645	5.5	10
.0035	33.1	2	.3736	5.4	10	.7937	5.6	10
.0218	17.6	2	.3952	5.7	10	.8344	5.6	ĩŏ
.0262	17.6	2	.4252	5.6	10	.8784	5.6	10
.0499	5.9	10	.4752	5.8	10	.9071	6.0	10
.0772	5.8	10	.5258	5.6	10	.9383	6.0	10
.1310	5.6	10	.5792	5.8	10	.9605	13.1	
.1822	5.7	10	.6224	5.6	10	.9759	31.5	3 3 3
.2150	5.3	10	.6625	6.1	10	.9884	32.9	3
.2578	5.4	10	.6916	5.6	10	.9982	33.8	2
.2969	5.3	10	.7170	5.4	10			

На рис. 59 изображена близкая к минимуму блеска часть кривой; нанесены индивидуальные наблюдения. Она имеет исключительно

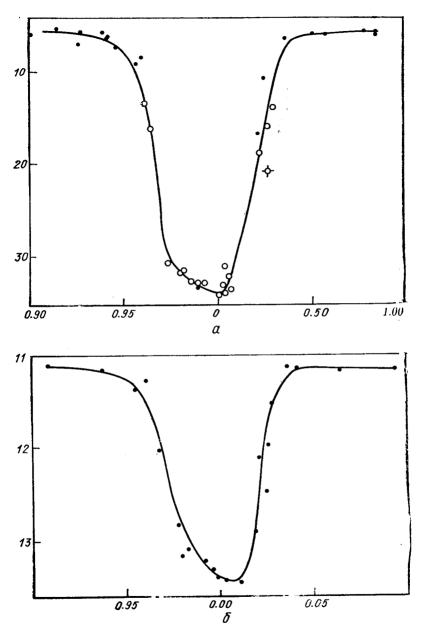


Рис. 59. Кривые изменения блеска EX Vulpeculae (а) и AL Aquilae (б).

Таблица 99. Одесские наблюдения EX Vulpeculae и КЗП 5008

JD hel	EX	КЗП 5008	JD hel	EX	КЗП 5008
243 6789.458 6791.523 6792.521 6809.412 6814.438 6816.364 6840.306 6863.275 6864.225 6868.271 6869.238 7104.489 7119.521 7144.480 7145.486 7163.430 7165.371 7166.406 7167.407 7169.448 7170.419 7172.428 7174.411 7175.403 7176.431 7192.381 7192.381 7192.381 7193.376 7195.359 7196.334 7197.356 7198.356 7218.274 7228.267 7494.460 7496.475 7497.511 7501.490 7518.424 7520.431 7521.436 7522.411 7523.440 7524.451 7525.442	9.4 9.4 5.8 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	5008 8.6	JD hel 243 7854.507 7873.502 7881.478 7882.451 7884.471 7886.435 7887.446 7900.412 7901.398 7903.401 7909.389 7910.371 7911.368 7932.329 7955.278 7956.277 7957.268 7959.244 7960.241 7961.249 7962.255 7963.273 7964.254 8210.485 8228.501 8230.503 8233.491 8235.488 8236.483 8241.473 8255.488 8236.483 8241.473 8259.423 8260.442 8263.431 8268.410 8269.357 8283.305 8286.345 8287.363 8288.366 8289.365 8290.329 .359 8291.339	10.91 5.8 5.4 5.4 6.2 28.3 5.4 6.2 28.3 5.4 6.2 28.3 5.4 5.8 5.4 5.8 5.4 5.8 6.9 6.2 7.3 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.4 6.2 6.2 6.3 6.4 6.2 6.2 6.3 6.4 6.2 6.2 6.3 6.4 6.2 6.2 6.3 6.4 6.2 6.3 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	K3П 5008
		5.2 16.7: 5.7 6.3 7.3 5.7 5.7 5.2 6.7 3.8	8291.339 8293.332 8294.323 8295.330 8296.302 8623.419 8639.399 8642.438 8644.363 8653.448		

JD hel	EX	ҚЗП 5008	JD hel	EX	ҚЗП 5008
243 8666.330 8667.330 8670.308 8671.300 8674.286 8675.273 8679.276 8700.223	5.8 5.4 5.8 5.8 5.8 5.8 6.2 5.8	5.8 7.0 5.8 7.4 6.3 7.4 5.7	243 8997.380 8998.393 9006.350 9019.276 9020.307 9021.317 9022.302 9023.337	5.8 5.8 6.2 6.2 5.8 5.8 5.8	7.4 8.2 6.3 6.3 7.4 6.3 8.4 7.4
8943.513 8950.514 8966.493 8967.502 8973.470 8976.456 8978.434 8980.470	6.2 5.4 5.4 6.5 5.4 6.2 5.8 5.4	8.2 6.3 7.9 8.2 7.9 7.4 7.0	9024.326 9025.320 9028.325 9029.283 9052.237 9056.222 9058.228	5.8 5.8 5.8 7.0 7.0 6.2	5.2 7.4 7.4 6.3 7.9 4.8

Таблица 100. Московские наблюдения на старых снимках (серии S и T)

JD hel	EG Sge	EX Vul	ҚЗП 5008	JD hel	EG Sge	EX Vul	КЗП 5008
241 4578.264	0.0	5.9	5.2	242 8789.33	-	5.9	6.6
4909.375	0.0	6.5	5.7	9159.35	1.0	5.9	6.2
5227,406			6.0	9161.33	1.0	5.4	5.8
5250.318	_	5.9	4.8	9168.28	0.0	6.1	5,8
5283,286			6.3	9169.23	(14.2	7.3	7.0
5614.344	0.0	5.9	7.7	9188.19	0.0	12.9	6,6
8950.246	0.0		7.6	9485.366	3.1	6.1	6.6
8973.220	1.8		4.2	9486.404	1.8	6.1	4.7
9278.358			14.5	9962.145	0.0	5.9	7.5
9280.351	0.0			243			
242	0.0			0607.253	2.0	5.9	7.4
8045.38	(9.2	6.5	6.3	0617.262	0.0	5.9	5.7
8751.40	(9.2	4.4	6.6	4281.274	0.0	5.9	5.2
8757.33	1.0	16.2	5.2	4623,329	2.0	5.9	5.7
8759.43	0.0	6.2	14.5	4628.308	2.0	(10.9	8.2
8776.34	0.0	2.4	5.2	4683.177	3.1	5.9	5.2
					J. I	5.9	
8786.31	0.0	5.9	17.5	6072.462		5.9	

интересный вид. Несомненно, что затмение полное, но блеск в глубине минимума не остается постоянным. Не симметричны и ветви кривой. Такое же явление обнаружено автором и при исследовании сходной по продолжительности периода звезды AL Орла. По-видимому, у них на виде кривой сказываются газовые потоки. Наблюдения приведены в табл. 91, 99, 100.

GH Лисички (Vulpeculae)

Звезда типа Алголя? На изученных автором снимках не отмечено ни одного ослабления блеска. Наблюдения приведены в табл. 91.

HU Лисички (Vulpeculae)

Звезда типа RR Лиры. Она очень слаба даже для московских снимков. Поэтому точность наблюдений автора не очень высокая. Кроме того, у нее, по-видимому, есть сильный эффект Блажко. Во всяком случае, после отыскания приближенных элементов можно было построить сезонные кривые блеска и из них определить моменты максимума:

Max hel JD	E	0-C
2437165.387	0	+0.000
9292.466	4620	←.003
9712.349	5532	012
41513.491	9444	+.017

Остатки О — С вычислены относительно формулы

Max hel JD =
$$2437165.387 + 0.4604074 \cdot E$$
.

Эта формула использована при выводе средней кривой блеска (табл. 101). Наблюдения приведены в табл. 91.

Таблица 101. Средняя кривая блеска HU Vulpeculae

Фаза	s	n	Фаза	s	n	Фаза	s	n
					1			
0 ^p .011	1.3	5	OP.378	9.2	5	0 ^p .690	9.5	5
.044	4.6		.403	7.4	5	.719	9.5	555555555
.075	4.7	5555555555555	.428	8.7	5	.763	9.9	5
.097	3.6	5	.4 51	8.7	5	.783	9.7	5
.117	3.4	5	.473	9.5	5	.808	9.9	5
.137	5.0	5	.4 81	7.9	5	.822	8.6	5
.155	3.2	5	.513	8.5	5	.841	9.7	5
.182	6.7	5	.534	8.6	5	.857	8.5	5
.216	6.2	5	.556	9.5	5	.878	7.7	
.236	6.7	5	.587	9.6	5	.900	7.0	4
.256	6.6	5	.612	9.5	5	.922	4.1	5
.277	6.0	5	.636	9.4	5	.943	4.3	5
.307	7.6	5	.655	10.0	5555555555	.978	1.5	4 5 5 5 3
.349	9.1	5	.670	9.6	5	.992	0.4	3

HV Лисички (Vulpeculae)

Звезда относится к типу RR Лиры. Она оказалась исключительно интересной. Ее период не удавалось определить до тех пор, пока не было обнаружено, что он за время наблюдений существенно изменился. Как видно из сводки

для представления сезонных моментов максимума, определенных по средним кривым блеска, надо воспользоваться двумя формулами. В интервале 2437165—2438673 JD

Max hel JD = 2437165.449 + 0.419906 (E + 6984);

Таблица 102. Средняя кривая блеска HV Vulpeculae

		•						
Фаза	s	n	Фаза	s	n	Фаза	S	n
0P.016 .047 .085 .128 .162 .176 .196 .242	9.2 9.5 11.4 12.6 14.4 15.4 16.4 17.1 19.3	5 5 5 5 5 5 10 10	0P.352 .407 .447 .494 .552 .601 .631 .690	18.6 19.4 19.7 20.2 19.8 20.0 20.2 20.3 20.2	10 10 10 10 10 10 9 10 10	0P.799 .839 .862 .883 .912 .942 .967	20.2 21.2 21.1 20.2 18.7 14.5 9.6 6.7	10 5 5 5 5 5 5 5 5

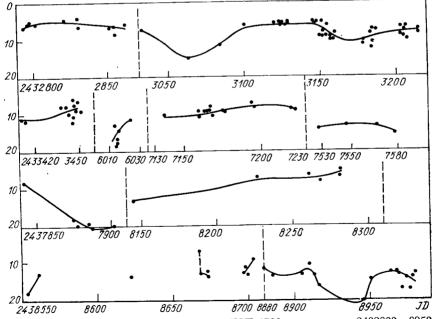


Рис. 60. Кривая изменения блеска звезды КЗП 4786 в интервале 2432800—8950.

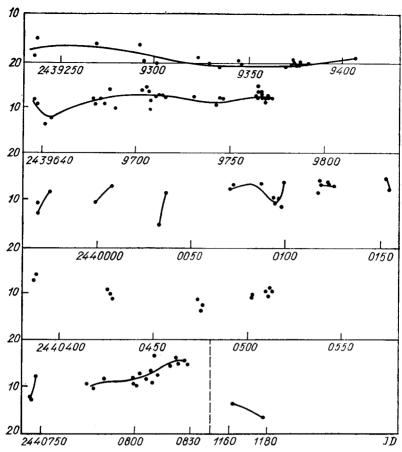


Рис. 61. Кривая изменения блеска КЗП 4786 в интервале 2439250—2441180.

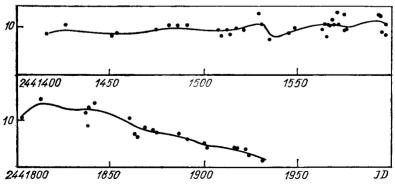


Рис. 62. Кривая изменения блеска КЗП 4786 в интервале 2441 400—2441 950.

Max hel JD = $2440098.360 + 0.419991 \cdot E$.

Возможно, что изменение периода происходило по более сложному закону и что у звезды есть сильный эффект Блажко. Из всех наблюдений построена единая средняя кривая блеска (табл. 102). Наблюдения приведены в табл. 91.

Звезда КЗП 4786

Эта звезда неправильная. Все симеизские и московские наблюдения нанесены на рис. 60—62. Хорошо видны плавные, медленные колебания блеска с амплитудой больше одной звездной величины. На некоторых симеизских снимках около звезды виден ореол. По-видимому, она очень красная. Быстрые колебания блеска сомнительны.

Звезда КЗП 5008

Звезда относится к типу Алголя. На московских и одесских снимках звезда находилась в минимуме блеска вблизи следующих моментов:

Источник	Min JD	Ε	O-C	Источник	Min JD	E	0 — C
Москва	2428759.43	5848	0.00	Москва	2439237.548	0	011
»	8786.31	-5833	.00	>	9746.411	+ 284	→.004
Одесса	37218.272	-1127	+.010	>	9764.349	+ 294	+.017
»	8293.329	→ 527	+.020	»	41597.286	+1317	— .001

Они представляются формулой

Min hel JD = $2439237.559 + 1.791745 \cdot E$.

Эта формула использована при выводе средней кривой блеска (табл. 103, рис. 58).

Таблица 103. Средняя кривая блеска КЗП 5008

		F - A	F					
Фаза	S	n	Фаза	5	n	Фаза	s	n
0p.005	18.6	2	0p.334	5.6	10	0 ^p .758	5.4	10
.015	16.7	3	.368	5.6	10	.785	5.7	10
.030	13. 4	2	.423	6.2	10	.807	5.5	10
.044	8.2	5	.465	5.7	10	.837	5.4	10
.081	6.2	10	.507	6.3	10	.879	6.0	10
.109	5. 6	10	.539	6.1	10	.932	5.7	10
.154	5.4	10	.580	5.4	10	.962	6.4	5
.194	5.6	10	.631	5.2	10	.976	9.9	2
.241	5.8	10	.670	5.7	10	.986	14.4	2
.278	6.1	10	.698	5.7	10	.996	16.3	2
.307	5.9	10	.732	5.5	10	.999	18.2	$\bar{2}$

Звезда КЗП 4845

Кроме всех описанных выше звезд, автор изучал поведение звезды КЗП 4845-124. 1905. На всех новых московских снимках не обнаружено никаких реальных изменений ее блеска.

Глава V. ЗВЕЗДЫ ТИПА RR ЛИРЫ В СОЗВЕЗДИИ ВОДОЛЕЯ

Совокупность звезд типа RR Лиры, расположенных в двух областях неба, входящих в созвездие Водолея, изучена автором по симеизским планетным снимкам и частично по визуальным наблюдениям. Степенные шкалы блеска звезд сравнения привелены в табл. 104.

Таблица	104.	Степенные	шкалы	блеска	звезд	сравнения
таолица	104.	Of Cheminac	III IX CLUILLA	Onconic		- F

I a o n n q a To t.					
Звезда	а	b	с	d	e
WX Aqr Фотографическая Визуальная	—9.5 —	0.0	10.6 10.6	12.6 7.9	16.4 15.4
АІ Аqr Фотографическая Визуальная	0.0	13.1 1 0.0 9.3	17.6 — 17.8		
AK Aqr BE Aqr BG Aqr	0.0 0.0 6.0	9.5 9.5 0.0	14.5 8.0	_	
BY Aqr CF Aqr	$0.0 \\ -2.0$	9.1 0.0	$\frac{15.0}{9.3}$	24.6 14.8	
CG Aqr CH Aqr CL Aqr	0.0 0.0 0.0	5.1 3.5 7.5	14.6 6.7 13.8	_	
CO Aqr CS Aqr	0.0	6.7 6.9	16.8 14.4	21.3	_

WX Водолея (Aquarii)

Автор наблюдал эту звезду визуально при помощи 300-мм рефлектора; к сожалению, в минимуме блеска звезда на пределе зрения. Эти наблюдения дали возможность определить приближенное значение периода, которое было уточнено по оценкам, сделанным на симеизских снимках. Получена следующая окончательная формула, относительно которой вычислены остатки О — С и средние кривые изменения блеска, приведенные в табл. 105:

Max hel JD = $2420387.308 + 0.5508409 \cdot E$; $P^{-1} = 1.81540623$.

Моменты максимумов, найденные по сезонным кривым блеска, приведены в следующей сводке:

Источник	Max hel JD	E	O - C
Симеиз	2420387.294 5854.425	0 9925	- 0.01 4 + .021
Визуальные наблюдения	37544.342	31147	008

Таблица 105. Средние кривые блеска WX Водолея

		-F						
Фаза	s	n	Фаза	s	n	Фаза	s	n
Визуальна	я		-					
0P.010 .024 .042 .063 .099 .184	4.0 3.8 5.5 6.8 8.3 11.2	4 5 3 3 4	0P.452 .684 .757 .800 .867 .916	17.4 15.8 18.4 19.2 18.9 18.6	1 5 3 2 2 3	CP.946 .955 .964 .975 .987 .998	12.6 11.3 8.0 5.3 4.8 3.4	2 3 4 5 4 4
Фотографи	ческая							
0P.021 .078 .150 .201 .269 .320	0.3 1.6 4.0 7.6 10.0 12.1	5 4 4 4 5 5	0P.378 .414 .512 .575 .660 .711	11.4 12.0 13.9 14.6 14.6 13.1	4 6 5 5 3 3	0°.762 .806 .848 .886 .912 .964	13.9 13.7 13.0 14.0 13.4 —2.7	3 3 2 2 2

При выводе средней кривой блеска из визуальных наблюдений замечено, что с течением времени высота максимума убывает. Возможно у звезды есть эффект Блажко. Наблюдения приведены в табл. 106, 107. Планетные снимки получены по методу Меткафа, т. е. изображения звезд имеют вид небольших полосок. В двух случаях изображения были клинообразны — во время экспозиции блеск переменной звезды возрастал. При этом блеск оценивался по концам штриха и указывались две даты.

AI Водолея (Aquarii)

Звезда наблюдалась автором визуально и на симеизских снимках. Наблюдения приведены в табл. 106, 107. Получены следующие моменты максимумов блеска:

Источник	Max hel JD	Ε	O C
Юз [16]	2425424.65	20186	-0.005
Симеиз	6568.349:	18337	+ .026
»	34625.335	5311	.000
Визуальные наблюдения »	7547.26	587	-0.025
	7910.364	0	.000
	7913.46	+5	+ .003

Таблица 106. Наблюдения на симеизских планетных снимках. Восточная часть созвездия Aguarius

JD hel	wx	Al	AK	BE	BG
242 0373.452 0387.294 0394.328 0396.295 0717.475 0721.441 0726.507 0748.405 1134.330 1463.434 1466.380 1485.334 1493.314 2553.335 2554.423 3647.406 3649.409 3664.287 3673.307 3674.255346 3678.315 3698.254 3731.218 4033.380 4732.493 4736.426 4740.471 4744.409 4760.320 4773.410 5129.443 5470.384 5474.441 5485.469 5497.395 5503.420 5530.333 5854.425 6186.476 6210.391 6235.323 6236.359 6240.371 6248.330 6264.233306 6568.4666 6948.384	14.0 — 3.2 13.6 12.1 6.4 15.6 13.6 15.4 5.8 — 2.2 13.5 14.3 9.3 — 0.2 — 1.4 14.5 13.8 1.3 10.6 12.5 14.5 13.6 — 14.5 13.9 — 1.3 — 9.4 14.4 — 14.8 3.6 5.1 — 10.9	11.5	8.3 15.6	9.8 9.5 	(8.0 — — — — — — — — — — — — — — — — — — —
.479 7302. 47 2	13.1 13.8	11.4	17.8	_	

JD hel	wx	Al	AK	BE	BG
242 7356.261 7362.284 7367.243 7685.430 8398.415 8402.434	14.5 11.6 13.2 —1.4 12.1 10.6	9.8 13.1 12.2	14.6 — (9.3	15.5 6.0 8.5	7.1 0.0 11.0
8404.426 8433.323	10.0	15.4 —	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	14.0 15.5	8.0 5.3
8460.273 8461.300 8776.368	14.7 13.8	15.2 14.0	16.3	11.0 11.0 5.6	6.5 5.0 (8.0
8779.373 8780.373 243	-1.1 -		_	11.5	(13.0
0236.443 2769.441	5.3 16.4:	_	_	11.4	(8.0
2771.476 2775.476 3122.475	13.6 13.9	11.6	10.3	15.5 1.6 — 10.0	5.3
3157.422 3178.322 3179.313	13.4	15.1 11.9	8.1 17.4	10.0 11.4	8.0
3187.337 3215.245 3860.485	11.6 12.6 11.6	_	12.7	=	<u> </u>
3867.506 3886.417	14.7	=			14.0
3897.395 3913.301 4223.477	5.1 6.8	19.6	15.2 18.3	14.5 13.3 4.3	9.0 1.2
4242.414 4596.464 4622.324	15.2 10.9 13.9			4.2 5.0 —	(8.0
4623.299 4625.335	7.8 13.5	4.0	16.7		_

Остатки О — С вычислены относительно формулы

Max hel JD = $2437910.364 + 0.6185331 \cdot E$; $P^{-1} = 1.61672835$.

Она же использована для построения средней визуальной кривой блеска (табл. 108).

Таблица 107. Визуальные наблюдения

JD hel	. 5	JD hel	5	JD hel	s
243		243		243	
WX Aquarii					
7523.389 .397 .406 .415 .424 .432 .451 .469 .493 7524.352 .363 .371 .381 .392 .409 .432 .486 .490 .494	4.4 4.2 1.1 2.0 4.2 4.6 6.9 9.4 8.9 14.9 17.4 18.4 19.9 18.4 19.8 4.4 3.9	7524.504 .511 .520 .527 .533 .540 7526.412 7528.370 .381 7530.361 7531.468 7543.333 .350 .357 7544.294 .315 .322 .327 .333 .338	2.8 2.3 0.0 3.4 4.2 6.9 17.4 4.7 5.9 14.9: 10.9 12.9 18.4 12.8 10.6 7.4 5.3 5.8	7544.344 .349 .365 .374 .397 7545.290 .311 .375 .390 .403 .410 .415 .419 .424 .428 .433 .438 .443 .449 .454	5.8 6.1 7.7 8.3 8.5 19.4 19.4 18.9 18.4 13.6 9.5 7.4 6.7 5.6 3.5 5.5
AI Aquarii					
7523.365 .392 .405 .431 .446 .456 .468 .492 7524.333 .352 .361 .371 .384 .408 .433 .455 .471 .504 .521 7525.311 .332 .362 7526.333 .381 .393 .412	13.0 15.0 16.0 16.0 15.0 15.0 15.0 15.0 14.0 13.0 12.0 12.0 15.0 15.0 15.0 14.0 15.0 15.0 14.0	7526.430 .468 7547.272 .281 .293 .298 .312 .321 .333 .346 .369 7549.357 .396 .421 7906.395 .411 .422 7910.304 .317 .328 .345 .355 .364 .373 .384	13.0 13.5 7.3 8.0 8.6 7.3 8.2 9.0 12.0 15.0 15.0 15.0 15.0 16.0 15.0 16.0 15.0 14.5 11.5 8.0 7.3 7.3 8.4	7910.406	11.5 13.0 14.0 18.0 17.0 19.0 17.0 18.0 15.5 15.5 15.0 20.0 14.0 11.0 9.0 10.0 8.2 7.8 7.8 14.0; 14.5; 17.0

Таблица 108. Средняя визуальная кривая блеска AI Aquarii

Фаза	S	n	Фаза	s	п	Фаза	s	n
0 ^p .011 .043 .079 .121 .188 .249	8.6 8.8 11.7 14.3 14.1 14.0	5 5 5 5 5 5	0 ^p .341 .405 .473 .553 .632 .730	14.7 15.0 14.6 15.0 17.2 18.8	5 5 5 5 4	0 ^p .917 .948 .973 .990	15.0 13.7 10.2 8.6	5 5 5 5

АК Водолея (Aquarii)

Эта звезда очень слабая, но она хорошо видна на снимках вблизи максимума блеска. В следующей сводке приведены моменты усиления блеска:

Остатки О — С вычислены относительно формулы

Max hel JD =
$$2425424.765 + 0.6073594 \cdot E$$
.

Приведение всех наблюдений к одному периоду подтвердило эту формулу, но показало, что начальный момент надо слегка подправить. Окончательная формула имеет вид

Max hel JD = $2425424.735 + 0.6073594 \cdot E$; $P^{-1} = 1.64647159$. Наблюдения приведены в табл. 106.

ВЕ Водолея (Aquarii)

Изучены симеизские планетные снимки. Определены моменты усиления блеска:

Max hel JD	E	OC	Max hel JD	E	$O \rightarrow C$
2424736.426 4773.410 5129.443 5485.469 5503.420 6948.432 7367.243		+ 0.014 + .033 + .029 + .017 028 080 050	2427685.430 8776.368 32775.476 4223.477 4242.414 4596.464	+ 6860 + 15082 + 18059 + 18098	+ 0.038 + .004 + .017 + .036 + .004 038

Остатки О — С вычислены относительно формулы

Max hel JD = $2425439.731 + 0.4863896 \cdot E$; $P^{-1} = 2.05596501$.

Она же использована при построении средней кривой изменения блеска (табл. 109). Наблюдения приведены в табл. 106.

Таблица 109. Средняя кривая блеска BE Aquarii

		n	Фаза	S	n
0 ^p .278	13.4	5	0 ^p .802	12.5	4
		7			7
		3			2
		4	.929	5.3	3
5.1 3 5.0 5 6.9 6 2.2 4 1.2 5	5.0 5 .328 5.9 6 .580 2.2 4 .650	5.0 5 .328 12.8 5.9 6 .580 14.2 2.2 4 .650 14.5	5.0 5 .328 12.8 7 5.9 6 .580 14.2 3 2.2 4 .650 14.5 4	5.0 5 .328 12.8 7 .862 5.9 6 .580 14.2 3 .902 2.2 4 .650 14.5 4 .929	5.0 5 .328 12.8 7 .862 10.3 6.9 6 .580 14.2 3 .902 9.8 2.2 4 .650 14.5 4 .929 5.3

BG Водолея (Aquarii)

Эта переменная звезда очень слаба. Автор смог оценить ее блеск на 41 симеизской фотографии. Отмечены три момента усиления блеска, которые, как видно из следующей сводки моментов:

почти не противоречат формуле

Max hel JD =
$$2425424.60 + 0.505491 \cdot E$$
; $P^{-1} = 1.97827459$.

Наблюдения приведены в табл. 106. Автор не строил средней кривой блеска, так как наблюдений мало.

BY Водолея (Aquarii)

Переменность этой звезды открыта П. Ф. Шайн. Шапли и Юз [24] нашли формулу

Max hel JD =
$$2425447.50 + 0.65781 \cdot E$$
.

Автор исследовал звезду по симеизским снимкам и по сезонным кривым блеска получил следующие моменты максимума:

Max hel JD
$$E$$
 O—C Max hel JD E O—C 2421070.459 — 6654 — 0.007 2427664.321 + 3370 + 0.010 4730.502 — 1090 + $.004$ 33869.385 + 12803 — $.007$

Остатки О — С вычислены относительно формулы

Max hel JD =
$$2425447.506 + 0.6578057 \cdot E$$
; $P^{-1} = 1.52020574$,

которая также использована при определении средней кривой блеска (табл. 110). Наблюдения приведены в табл. 111.

Таблица 110. Средняя кривая блеска BY Aquarii

Фаза	,		Фаза	s	n	Фаза	s	n
0P.050 .081 .113 .150 .190 .256 .268 .308	6.1 9.1 8.2 10.7 16.7 18.5 18.1 19.5 20.3	555566666	0P.421 .497 .567 .589 .618 .670 .721 .762 .808	21.8 22.5 23.1 21.2 21.2 22.6 24.0 23.9 24.2	6 5 6 5 5 6 6 5 6	0P.834 .845 .862 .884 .934 .957 .961	23.2 22.6 24.4 24.0 16.2 11.3 6.8 8.3	5 5 6 5 4 3 4 5

Таблица 111. Симензские наблюдения ВУ Аquarii

JD hel		JD hel	s	JD hel	S
242		242		242	
0715.422	19.8	5496.304	16.3	7664.34 8	7.6
0740.304	11.4	5501.359	27.1	8018.4	22.1
0741.337	17.1	5505.282	24.6	8041.42	13.6
1070.441	5.8	.336	21.7	8367.480	7.9
1074.483	8.6	.390	15.0	8370.455	22.5
1084.456	17.8	5529.263	12.6	8379.48 3	15.1
1137.291	21.0	5800.469	21.1	8747.454	20.8
1427.392	21.1	5 826.46 0	7.1	9105.457	22.1
1431.324	23.6	5827.491	24.0	9114.454	26.6
3255.356	21.6	5828.450	8.1		
3968.445	20.2	5830.398	6.6	243	
3976.4 2 5	22.8	5834.464	18.8	0207.473	7.7
3994.461	9.1	6180.480	18.5	2775.378	21.7
.523	20.8	6187.396	24.6	3129.404	6.5
39 99.410	21.0	6191.456	9.1	3132.453	23.8
4 018.310	21.5	6239.318	24.0	3154.330	15.6
4051.268	20.8	6240.26 8	11.6	3475.474	11.5
4350.519	15.0	6540.481	24.6	3478.471	25.0
4 358.467	23.4	6562.360	23.9	3486.438	23.7
4362.511	21.5	6897. 483	18.7	3869.380	6.2
4412.318	21.7	6902.478	24.0	3886.325	24.0
44 16.267	22.6	6924.430	17.6	3892.310	22.5
4 730.401	23.6	6928.402	18.0	4222.454	23.0
544 5.482	14.6	6929.416	24.6	4238.329	22.1
54 49.486	2.3	6930.417	21.4	4239.344	21.2
547 5.353	20.8	6959.358	18.8	4306.3	6.4
54 79.353	20.8	7275.470	25.0	4334.3	23.7
5 482.365	7.0	7308.402	17.6	4601.380	23.4
549 5.293	21.6	7662.425	9.3	4605.375	22.2

CF Водолея (Aquarii)

Шапли и Юз [24] получили формулу

Max hel JD = $2425481.40 + 0.63238 \cdot E$,

с помощью которой вычислены сезонные кривые блеска и определены моменты максимумов, приведенные в следующей сводке:

Источник	Max hel JD	E	O A	O-B
Симеиз » Шапли,	2419216.430 25445.380	—13359 —3509	$^{+0.013}_{+.003}$	+0.006 003
Юз Симеиз »	5481.40 7664.401 33869.345	-3452 0 +9812	022 003 +.012	009 +.007

По способу наименьших квадратов найдена формула

Max hel JD =
$$2427664.404 + 0.6323817 \cdot E$$
,

относительно которой вычислены остатки O-A. Ход остатков улуч-шается, если отбросить момент максимума, определенный Шапли и Юз. Получается формула

Мах hel JD = $2427664.410 + 0.6323816 \cdot E$; $P^{-1} = 1.58132368$, по которой вычислены остатки О — В и средняя кривая блеска (табл. 112). Наблюдения приведены в табл. 113.

Таблица 112. Средняя кривая блеска СF Aquarii

Фаза	``	п	Фаза		a	Фаза		а
0 ^p .028	3.1	3	0 ^p .370	8.6	4	0p.782	9.9	5
.080	2.5	4	.490	10.1	6	.850	8.7	6
.097	5.0	4	.561	9.0	7	.907	5.5	2
.165	4.9	4	.642	10.0	4	.924	4.5	5
.214	7.6	5	.726	9.4	4	.961	7.2	2
.316	8.1	7	.761	10.9	6			

Таблица 113. Наблюдения на симеизских планетных снимках. Западная часть созвездия Aquarius

JD hel	CF	CG	СН	CL	CO	cs
241 9216.431 242 0372.389 0715.422 0726.407 0740.304 0741.337 0748.309 1074.483 1084.455 1137.291 1427.392	2.0 ————————————————————————————————————	20.6 (14.6 14.6 18.6 ————————————————————————————————————	5.3 	3.5 	- 4.2 - 5.2 11.8	- 18.3 - 3.1 17.8 18.7
1431.421 3255.356		— 14 6	_			3.4
3255.356 3286.374	_	14.6	_			
3619.448	3.1	15.6	_	_	$\frac{11.7}{12.7}$	13.1

JD hel	CF	CG	СН	CL	СО	cs
242 3968.445 3976.425 3994.461 3999.410 4018.310 4051.268 4055.262 4350.519 4354.413 4358.467 4362.511 4412.318 4415.337 4416.267 4730.401 4737.447 4771.364 4787.274 5445.482 5449.486 5475.353 5479.352 5482.365 5494.280 5495.293 5496.304 5501.359 5505.336 5528.260 5529.263 5534.246 5800.469 5803.433 5826.460 5827.491 5828.450 5830.398 5834.463 6187.395 6191.455 6192.489 6208.362 6215.35: 6220.379 6239.318 6240.268 6540.481 6562.360 6897.483 6902.478 6924.430 6925.444	8.9 	17.6 1.0 (20.6 (5.1 10.8 3.4 3.4 1.1 (14.6 19.6 16.6 20.6 (14.6 16.1 17.1 14.0 16.1 8.8 0.0 16.6 17.6 16.1 2.2 9.3 6.6 16.6 16.6 3.2 11.3 (14.6 8.1 1.9	7.77	7.5 13.0 7.5 10.5 10.5 10.5 10.5 10.5 11.8 6.8 13.5 11.0 6.5 10.0 11.0	(11.7 (12.7 	19.9

JD hel	CF	CG	СН	CL		cs
			СП	CL	СО	<u> </u>
242 6928.402 6929.416 6930.417 6944.330 6947.337 6949.391 6954.332 6959.356 7275.470 7308.402 7662.425 7664.348 7690.326 8018.41: 8041.30: 8379.483 8393.370 8401.465 8747.454 9105.457 9111.482 9114.454 9134.355 9522.284 9548.281	9.3 8.8 10.1 1.0	(14.6 0.0 11.2 1.5 — 3.1 5.7 13.5 1.6 1.4 12.0 — 16.6 13.1 (14.6 (19.6 — 7.3 — 3.4 —	9.7 7.1 —————————————————————————————————	12.5 	15.7 — (6.7 — 14.6 10.2 — 5.7 — 8.2 9.2 9.8 — — —	16.2 16.8 7.6 11.2 16.4 17.8 10.6 18.5 21.1 8.9 12.3 19.0 12.5 14.4 5.5
243 0207.473 2743.465 2775.378 2776.402 2795.398 3129.404 3132.452 3148.375 3151.373 3157.334 3475.474 3486.438 3502.404 3510.376 3865.395 3869.379 3886.325 3898.356 4222.454 4238.329 4239.344 4245.364 4306.25: 4334.21: 4601.380 4605.375	7.4 5.8 9.6 6.2 3.1 14.3 5.9 5.2 4.0 9.8 8.4 12.6 4.0 12.9 6.4 — 4.2 — 6.0 10.2 7.0	5.1 12.2 15.1 ——————————————————————————————————	7.7 9.7 8.7 8.7 3.5 0.1 1.3 2.9 4.8 8.7 10.7 7.7 10.7 9.7 2.3 (6.7 5.6 5.6	8.5 ————————————————————————————————————	(12.7 	8.1 10.5 15.6 19.4 ————————————————————————————————————

СG Водолея (Aquarii)

Автор оценил блеск этой звезды на симеизских снимках и при помощи элементов, найденных Шапли и Юз [24], построил сезонные кривые блеска. Из них определены три момента максимума:

Остатки О — С вычислены относительно улучшенной формулы

Мах hel JD . = $2425482.376 + 0.4533280 \cdot E$; $P^{-1} = 2.2059083$, которая также использована при построении средней кривой блеска (табл. 114). Наблюдения приведены в табл. 113.

Таблица 114. Средняя кривая блеска СG Aquarii

Фаза	s	n	Фаза	s	n	Фаза	s	n
0P.008 .038 .061 .099 .174 .221	1.5 1.6 1.4 3.9 8.1 8.8	5 6 5 8 5 7	0P.257 .354 .412 .477 .572 .641	11.8 14.0 15.6 15.8 16.7 14.5	6 5 6 8 7	0P.689 .738 .846 .926 .958 .982	15.9 16.7 17.0 4.6 1.9 1.8	6 6 7 4 4 4

СН Водолея (Aquarii)

С элементами Шапли и Юз [24] по симеизским наблюдениям построены сезонные кривые блеска и определены следующие моменты максимума:

Источни к	Max hel JD	E	O — C
Шапли, Юз Симеи з » »	2425449.55 5482.344 5800.484 33148.398 4239.375:	0 66 706 15489 17684	$ \begin{array}{r} -0.001 \\ -0.012 \\ +0.014 \\ -0.004 \\ -0.058 \end{array} $
»	4239.373:	11004	— .050.

Остатки О — С вычислены относительно улучшенной формулы Max hel JD = $2425449.551 + 0.4970528 \cdot E$.

Весьма возможно, что после даты 2433148 период уменьшился скачком. Наблюдения приведены в табл. 113. Средней кривой блеска автор не строил, так как наблюдений мало и период переменен.

CL Водолея (Aquarii)

Шапли и Юз [24] получили формулу

Max hel JD = $2425413.60 + 0.59542 \cdot E$,

которая использована автором для построения сезонных кривых блеска по симеизским наблюдениям. Определены моменты:

Источник	Max hel JD	E	0-C
Симеиз	2420726.400	-7872	-0.006
Шапли, Юз	5413.60	0	+ .007
Симеиз	5505.289	+ 154	+ .001
»	33502.441	+13585	003

По способу наименьших квадратов получена формула

Max hel JD = $2425413.593 + 0.5954252 \cdot E$; $P^{-1} = 1.67947208$.

относительно которой вычислены остатки О — С и средняя кривая блеска (табл. 115). Наблюдения приведены в табл. 113.

Таблица 115. Средняя кривая блеска CL Aquarii

Фаза	s	n	Фаза	s	n	Фаза	s	n
0 ^p .007 .080 .123 .205 .276	4.2 6.0 6.5 8.5 9.5	4 3 4 3 4	0 ^p .335 .393 .473 .599 .718	11.5 11.9 12.3 11.3 12.5	5 7 6 6	0 ^p .740 .795 .911 .938	11.7 13.0 8.0 4.4	5 4 2 4

СО Водолея (Aquarii)

Из сезонных кривых изменения блеска, построенных по симеизским наблюдениям, получены два момента максимума

Max hel JD = 2424737.444; 2433157.277.

Предполагая, что период звезды оставался постоянным, автор построил среднюю кривую блеска (табл. 116), используя формулу Мах hel JD = $2424737.444 + 0.5610604 \cdot E$; $P^{-1} = 1.782339299$. Наблюдения представлены в табл. 113.

Таблица 116. Средняя кривая блеска СО Aquarii

Фаза	s	n	Фаза	s	n	Фаза	s	n
0 ^p .002 .037	2.9 6.1	5	0 ^p .278	12.0	6	0 ^p .622	13.9	6
.102	7.0 6.9	5 6 6	.315 .345 .443	12.3 13.8 15.8	4	.662 .763	14.2 17.2	5 3
.174	7.8	4	.545	14.6	8	.952 .979	$\frac{6.0}{4.3}$	4 3

CS Водолея (Aquarii)

Сезонные кривые блеска позволили определить уверенные моменты максимума:

Max hel JD	E	O - C
2420741.346	0	+0.006
4416.258	6449	006
6180.504	9545	+. 003
8401.177	13442	006
33486.474	22366	+. 003

Остатки О — С и кривая блеска (табл. 117) вычислены относительно формулы

Max hel JD = $2420741.340 + 0.5698440 \cdot E$.

Наблюдения даны в табл. 113.

Таблица 117. Средняя кривая блеска CS Aquarii

Фаза	s	n	Фаза	8	n	Фаза	s	n
0P.003 .056 .103 .137 .165 .197 .240	4.6 7.5 8.3 10.0 11.8 11.7 11.2 16.0	6 4 5 5 6 5 4 6	OP.383 .408 .475 .517 .548 .578 .620	15.1 14.8 15.3 15.8 16.3 17.4 17.0	5 3 5 5 6 5 4 5	0°.703 .751 .814 .880 .913 .948 .972	18.2 18.8 19.2 15.7 10.7 8.6 8.0 3.1	6 5 5 6 5 4 4 2

Глава VI. ЗВЕЗДЫ ТИПА RR ЛИРЫ СОЗВЕЗДИЙ ЗМЕЕНОСЦА И ЗМЕИ

Исследованы 12 звезд типа RR Лиры, расположенных в границах этих двух созвездий. Данные о звездах сравнения помещены в табл. 118. Использованы наблюдения автора, полученные на московских, симеизских и одесских снимках.

Таблица	118. Степе	нные шкалы	блеска	а звезд (равнения
Звезда	а	ь	с	đ	e
V 370 Oph	0.0	8.2	16.2		
V 722 Oph	0.0	5.0	13.5	15.5	
V 723 Oph	0.0	7.0	12.4	15.3	
V 724 Oph	0.0	7.9	12.4	15.4	_
V 731 Oph	0.0	8.6	11.8	15.1	10.0
V 765 Oph	0.0	8.4	16.3	10.1	18.2
V 768 Oph	8.5	0.0	8.2	14.2	
V 777 Oph	0.0	9.5	18.7	17.2	
V 1011 Oph	0.0	8.3	16.0		_
CF Ser	0.0	8.9	17.7	_	
CG Ser	0.0	9.1	16.3		_
CO Ser	5.5	0.0	8.2		_

Таблица	119.	Московские	наблюдения	V	723	И	V	731	Ophiuchi
---------	------	------------	------------	---	-----	---	---	-----	----------

JD hel	V 723	V 731	JD hel	V 723	V 731
243			243		
6702.496	6.0	9.9	6734.478	12.9	15.5
6703.497	11.7	15.2	6747.336	14.2	15.5
6720.444	7.0	15.5	.380	16.9	15.0
.489	7.0	4.1	.418	16.4	15.0
6721.432	12.9	14.5	6749.442	12.0	18.2
.479	13.4	16.1	6750.422	5.8	15.0
6724.419	13.7	11.8	6751.424	12.4	15.5
6728.381	10.1	13.9	7047.547	15.4	16.1
.428	9.8	1.2	7050.506	6.0	_
.475	11.2	1.4	7051.450	8.8	_
6729.441	13.2	13.9	.472	13.4	_
.482	13.9	0.9	.493	10.9	
6733.439	10.7	6.7:	<i>.</i> 514	11.4	
6734.432	13.4	9.7	. 53 6	10.6	_

•					
JD hel	V 723	V 731	JD hel	V 723	V 731
243 7053.491522 7072.397 7074.393 .439 .485 7077.379 .401 .468513 7078.415 .459504 7079.345	9.2 5.4 13.9 13.4 10.2 13.0 13.4 14.1 14.8 16.4 8.4 9.4 10.4 11.3	16.1 6.7 ———————————————————————————————————	243 7079.392 .440 .486 7080.450 7087.434 7116.364 7136.300 7137.303 7377.547 7378.584 7486.317 7488.313 7490.325 7493.317	11.3 13.4 13.6 15.4 13.9 6.0 4.1 14.1 13.6 3.0 9.9 10.3 13.2 12.4	14.5 1.1 1.1 0.0 15.5 15.0 20.2 12.9 15.6 10.8 5.2 15.0
· JD h	el	V 370	V 722	· v	724
243 7052.5 7074.4 7077.4 7078.4 7079.5 7080.4 7087.4 7089.4 7089.3 7100.3 7102.5 7103.3 7106.2 7113.3 7132.3 7135.3 7136.3 7136.3 7136.4 7137.4 7138.7 7138.7 7138.7 7138.7 7138.7 7138.7 7138.7 7138.7 7138.7 7138.7 7140.7 7140.7 7140.7 7143.7 7146.7 7166.7 7165.7	662 190 182 182 187 187 188 188 181 183 184 183 184 183 183 183 183 183 183 183 183	16.2 7.2 12.5 7.7 8.2 12.6 15.2 12.6 17.2 14.2 7.2 14.6 7.2 11.8 13.8 16.2 13.2 7.3 15.1 14.6 8.2 9.3 14.6 14.2 5.5 16.2	15.5 13.5 14.5 11.1 3.0 13.5 14.5 13.5 14.5 16.5 16.5 16.3 16.3 16.3 16.4 12.4 12.4 12.4 15.5 4.0 11.0 13.5 14.5 15.5 10.3 16.5 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3		15.9 14.9 5.4 12.9 14.9 16.9 (17.9 5.0 13.9 14.9 14.9 5.4

V 370 Змееносца (Ophiuchi)

После определения приближенных элементов построены сезонные кривые блеска и определены моменты максимумов:

Источник	Max hel JD	\boldsymbol{E}	$O \rightarrow C$
Симеиз » Одесса	2428700.446 33 083.353 6778.357	→ 6489	
Москва	7135.365		016

Они представляются формулой

Мах hel JD = $2436778.350 + 0.5694273 \cdot E$; $P^{-1} = 1.756150434$, относительно которой вычислены остатки О — С и средняя кривая блеска, приведенная в табл. 129. По ней определен средний момент максимума и окончательные элементы

Max hel JD = $2437135.347 + 0.5694273 \cdot E$; (Max — Min) : P = 0.13.

V 722 Змееносца (Ophiuchi)

Эта переменная звезда открыта и исследована Юз-Бойс [17]. Автор наблюдал звезду на московских, одесских и симеизских снимках. К сожалению, оценки симеизских снимков получились очень неуверенными, так как вблизи переменной звезды расположена сравнимая с ней по блеску звезда.

По сезонным кривым блеска определены следующие моменты максимумов:

Источник	Max hel JD	E	0 – C
Симеиз	2419920.392	— 27735	- 0.031
*	25388.420	— 18902	+ .030
Юз-Бойс	7924.60	 14805	+ .009
Симеиз	33766.488:	— 5368	+ .031
Одесса	6756.401	— 538	.012
Москва	7089.445	0	.011
Одесса	7107.391	+ 29	— .017

Остатки О — С вычислены относительно формулы

Max hel JD =
$$2437089.456 + 0.6190385 \cdot E$$
.

Помещенные в табл. 120 средние кривые блеска построены только по московским и одесским снимкам относительно формулы

Max hel JD =
$$2437089.445 + 0.619037 \cdot E$$
; $P^{-1} = 1.615412326$.

Таблица 120. Средние кривые блеска V 722 Ophiuchi

Фаза	m	n	Фаза	m	п	Фаза	m	n
Московски	е наблюде	ния						
0 ^p .013 .107 .199 .309	14.43 14.67 14.85 14.98	2 3 2 4	0 ^p .414 .488 .618 .688	15.12 15.11 15.15 15.09	3 3 2 2	0 ^p .773 .913 .952 .994	15.14 15.11 14.64 14.40	3 2 1 1
Одесские п	наблюдени	я						
0 ^p .018 .051 .148 .262 .412	14.50 14.60 14.96 14.94 15.19	2 3 3 3 5	0 ^p .466 .533 .646 .747 .812	15.23 15.21 15.16 15.18 15.23	2 4 4 2 2	0 ^p .881 .905 .947 .997	15.21 14.97 14.58 14.44	1 1 2 1

К звездным величинам стандарта SA 108 привязана степенная шкала блеска звезд сравнения по эмпирической формуле

$$m = 14.52 + 0.0408s$$
.

V 723 Змееносца (Ophiuchi)

Получены сезонные кривые блеска и по ним определены следующие моменты максимумов:

Источник	Max hel	JD	E	0	— с
Симеиз » Юз-Бойс Симеиз Москва »	2420992.598 5385.476 7924.60 9071.568 36728.236 7078.453 7378.579	22 16 13 11 	782 229	+	0.014 .003 .003 .026 .017 .026
				-	

Остатки О — С вычислены относительно окончательной формулы: Max hel JD = $2437378.576 + 0.7146405 \cdot E$.

V 724 Змееносца (Ophiuchi)

Эта переменная открыта Юз-Бойс [17]. При сообщении об открытии указано, что период близок к 0.443. Звезда слаба, наблюдать ее трудно. На снимках обнаружены следующие максимумы блеска:

Max hel JD	\boldsymbol{E}	O C
2437077.490	0	0.011
7089.441	27	003
7109.360	72	-+ .011
7113.351	81	+ .021
7136.327	133	004
7140.300	142	012

которые представляются формулой

Max hel JD = $2437077.501 + 0.44233 \cdot E$.

V 731 Змееносца (Ophiuchi)

После установления приближенного значения периода звезды построены сезонные кривые блеска и получены следующие моменты максимума:

Источник	Max hel JD	Ε	$O \leftarrow C$
Симеиз	2420655.467	-31068	0.008
»	5388.448	-22115	.000
Юз-Бойс [17]	7900.60	- 17363	+ .023
Симеиз	79 63.477	⊷ 17244	.009
»	33 802.384	-6199	.004
Москва	6728.449	 664	+ .002
*	7079.461	0	— .007

Остатки О—С вычислены относительно окончательной формулы Max hel JD = $2437079.468 + 0.5286466 \cdot E$.

V 765 Змееносца (Ophiuchi)

Звезда исследована по снимкам одесской службы неба. После отыскания приближенного значения периода построены сезонные кривые блеска, из которых получены два момента максимума:

Max hel JD = 2436778.431; 2437107.401.

По ним найдена окончательная формула

Max hel JD =
$$2436778.431 + 0.379873 \cdot E$$
.

Средняя кривая блеска не вычислялась, но приведение к одному периоду всех наблюдений указывает на внутреннее согласие данных.

V 768 Змееносца (Ophiuchi)

Воспользовавшись приближенным значением периода (P=0.7017), найденным по моментам усиления блеска, автор вывел два момента максимумов блеска из сезонных кривых:

Max hel JD = 2436778.318; 2437079.431.

По ним получена окончательная формула

Max hel JD = $2437079.431 + 0.701895 \cdot E$.

Наблюдения приведены в табл. 121.

Таблица 121. Одесские наблюдения V 370, V 765, V 768, V 777, V 1011 Ophluchi

JD hel	V 370	V 765	V 768	V 777	V 101
243					
6755.453	15.3	14.3	6.2	8.1	9.3
6756.374	15.2	7.3	8.2	0.0	6.5
.433	16.2	11.4	7.3	6.0	11.6
6757.391	12.8	15.4	1.2	6.3	1.2
.417	13.9	14.3	0.0	1.0	1.2
.444	14.8	15.3	1.0	0.0	1.2
6758.419	7.7	14.1	7.2	14.1	11.6
.446	9.6	15.0	9.2	1.2	4.6
6761.420	14.8	14.3	1.8	13.6	14.
6778.418	9.5:	6.3	1.0	11.5	4.6
6779.379	5.6.	(11.4	9.4	5.2	11.3
6780.351	14.2	7.3	0.0	0.0	14.1
6781.360	13.2	16.3	7.4	15.9	12.3
6790.393	9.3	16.3	3.5	11.2	10.3
6791.381	10.2	2.8	8.2	5.4	6.5
6805.303	14.4	16.3	6.2	1 4 .1	1.0
6807.286		10.0	3.0	12.5:	14.
6809.287	16.2	13.7	1.7	15.6	12.0
6814.300	9.2	9.4	2.0	5.8	12.
7075.503	15.2	4.7	7.3	1.1	2.
7077.423	12.6	6.3	0.0	14.6	13.
.491	15.2	13.7	5.1	15.9	15.
7078.412	5.5	17.3	11.8	14.8	12.
7079.392	18.2	16.3	 1.1	14.6	9.
.441	14.2	16.3	5.1	12.6	12.
7080,425	17.2	3.7	9.1	14.5	11.
7087.488		17.3	12.2	1.1	11.
7101.424	17.2	12.9	3.5	15.9	9.
7104.490			8.2	-	← 2.
7107.397	12.6	5.3	7.2	9.5	14.
7135.432			7.3	0.0	11.
7169.331	13.5	2.1	⊷ 1.5	1.0	14.
7170.308	13.5	15.3	9.2	16.7	12.
7172.304	14.8	17.3	6.2	13.0	5.
7173.302	16.2	16.3	12.5	18.7	16.
7457.448			8.2	(9.5	16
7488.387			14.2	9.5	6.
7494.342		8.4	5.1	12.5	9
7498.350		11.8	6.2	2.4	15

V 777 Змееносца (Ophiuchi)

После отыскания приближенного значения периода (P=0.52143) построены сезонные кривые блеска, из которых определены два

надежных момента максимума:

Max hel JD = 2436780.365; 2437135.433.

Отсюда получена окончательная формула

Max hel JD = $2436780.365 + 0.521392 \cdot E$.

Наблюдения приведены в табл. 121.

V 1011 Змееносца (Ophiuchi)

Построены две сезонные кривые блеска, из которых удалось определить два момента максимума

Max hel JD = 2436757.411: 2437104.524

и получить окончательную формулу

Max hel JD = $2436757.411 + 0.538160 \cdot E$.

Возможно, что у звезды присутствует эффект Блажко. Наблюдения приведены в табл. 121.

CF 3men (Serpentisi)

На основании исследования одесских и симеизских снимков автор получил формулу

Max hel JD = $2437454.398 + 0.53886 \cdot E$; $P^{-1} = 1.8557696$,

которая использована для вычисления фаз при построении сезонных кривых блеска. Определены следующие моменты максимума:

Источник	Max hel JD	Ε	O — C
Симеиз	2420253.459	0	0.000
»	5771.396	10240	+ .011
»	33766.446	25077	.005
Одесса	7080.429	31227	.011
»	7794.429	32552	.000

Относительно этой же формулы построена общая средняя кривая (табл. 122, 123).

Таблица 122. Средняя кривая блеска CF Serpentis по симеизским наблюдениям

Фаза	s	n	Фаза	s	n	Фаза	5	n
0 ^p .031	4.9	5	0 ^p .227	12.4	5	0 ^p .695	19.7	4
.066	8.0	5	.276	14.2	4	.763	18.0	5
.083	7.5	5	.406	15.1	4	.848	19.4	4
.092	6.9	5	.464	18.3	5	.886	15.4	4
.136	10.4	4	.594	20.5	5	.958	7.8	4

Таблица 123. Средняя кривая блеска CF Serpentis по одесским наблюдениям

Фаза	s	n	Фаза	s	n	Фаза	s	n
0 ^p .012 .071 .168 .230	4.4 8.1 9.1 12.2	5 5 5 5	0 ^p .338 .427 .522 .638	11.5 17.2 15.5 17.4	5 5 5 4	0 ^p .740 .878 .934	15.7 14.6 10.5	4 4 4

CG 3men (Serpentis)

Эта переменная звезда открыта и исследована Юз-Бойс [17]; найдены элементы

Max hel JD = $2427959.60 + 0.561 \cdot E$.

По симеизским и одесским снимкам были определены следующие сезонные моменты максимумов блеска:

Источник	Max hel JD	Ε	O - C
Симеиз	2420634.468	0	⊷ 0.003
«	5799.317	9207	+ .005
Юз-Бойс	7959.60	13058	.003
Олесса	37080.395	29317	.001

Остатки О — С вычислены относительно формулы

Max hel JD = $2420634.471 + 0.56096889 \cdot E$,

которая использована также для вычисления фаз при построении средних кривых блеска, приведенных в табл. 124, 125. Наблюдения помещены в табл. 126, 127.

Таблица 124. Средняя кривая блеска CG Serpentis по одесским наблюдениям

Фаза	s	n	Фаза	s	n	Фаза	s	n		
0 ^p .012 .092 .156 .227 .283	2.0 3.9 6.2 8.3 8.3	2 2 5 5 5	0 ^p .335 .433 .597 .695 .768	13.1 12.1 11.4 13.1 13.3	3 6 3 4 4	0 ^p .872 .932 .972	14.0 7.6 1.2	3 2 3		

Таблица 125. Средняя кривая блеска CG Serpentis по симеизским наблюдениям

-	Фаза	s	n	Фаза	s	n	Фаза	s	n
	0 ^p .038 .062 .085 .148 .173 .213	0.6 4.5 4.4 6.6 8.9 8.6	2 2 3 4 4 6	0 ^p .285 .356 .458 .528 .630 .664	11.6 12.7 11.9 12.6 13.8 12.8	4 4 5 2 4	0 ^p .771 .863 .892 .926 .984	11.4 12.1 6.2 6.6 1.2	3 4 2 2 4

Таблица 126. Одесские наблюдения V 722 Ophiuchi, CF, CG и CO Serpentis

JD hel	V 722	CF	CG	со	
243					_
6744.358	18.5	11.8	2.4	(8.2)	
6749.363	13.6	19.2	—		
.405	14.4	14.2	0.0	8.2	
6755.424	13.3		12.1	8.2	
6756.344	11.0	17.3	13.2	(8.2	
.401	-2.0	16.6	12.5	8.2	
6757.362	18.0	16.5	7.1	8.2	
6758.363	11.6	16.8	5.1	(8.2	
.389	13.0	16.1	1.1	3.6	
6759.361	10.0:	8.9	(9.1	7.0	
.389	17.5	14.0	14.2	7.2	
6761.379	6.6	14.8	9.1	(8.2	
6781.330	6.1	11.8	16.3	(8.2	
7073.437	9.8	7.8	13.9	11.0	
7075.464	17.0	20.7 19.7	7.3	11.2	
7077.396	14.5		13.1	(8.2	
.452 7078.388	17.5	19.7 16.8	14.2	(8.2	
7079.367	10.8 14.2	13.0	13.2 6.6	8.2	
.418	17.5	10.2	8.6	3.4 8.2	
.467	17.5 17.0	16.7	12.0		
7080.400	18.0	7.4	 1.0	(8.2	
.451	18.5	6.9	2.4	(8.2	
7099.361	0.5	10.5	14.2	2.2	
7101.400	11.8	7.8	14.2		
7102.407	2.4	(8.9	9.1		
.456	0.2	17.9	14.2	-	
7107.369	0.5	5.3	5.4		
.423	0.0		-	1.1	
7111.370	16.5	20.2	9.1	8.2	
.396	16.2	13.9	7.1	0.0	
.424	16.5	14.8	9.1	0.0	
7128.352		14.9	(9.1		
7373.628	 0.5	5.0	15.1		
7378.596		5.3	(9.1		
7402.538	18.5	12.9	6.7	(8.2	
7404.551	<u> </u>	10.9	13.1	(8.2)	
7405.547	17.5	(8.9	(9.1		
7406.555		4.5	12.1	6.4	
7427.477	_	10.9	12.1	4.6	
7454.398	170	0.0			
7457.412	17.0	19.7	-		
7458.393 7462.424	7.2	15.9 15.9	3.0	(8.2	
7462.424	1.Z	(8.9	3.0 9.1	(8.2	
7789.427	_	(13.9	5.1	0.0	
7740 403		144		10.13	
7790.403 .501		14.9 14.9		(6.0 (13.2	
.501		14.9	_	(13.2	
			 5.5		

JD hel	V 722	CF	CG	со
243 7794.444 7810.407 7810.454 7812.363 7813.389 7847.393 8113.559 8114.507 597 8143.510 8144.515 8164.434 8165.435 8170.447 8173.465		7.3 (13.9 (8.9 9.9 (8.9 9.9 —1.0 8.2 (13.9 (8.9 13.9 (8.9 9.9 (8.9	7.4 11.1 9.1 11.1 5.0 10.1 11.6 9.1 6.8 (9.1	(6.0

T а б л и ц а 127. Симеизские наблюдения V 722, V 723, V 731 Ophiuchi и CF, CG, CO Serpentis

Ophiuchi u Cr, Cu, Co Serpenus							
JD hel	V 722	V 723	V 731	CF	c G	СО	
241 8884.333 9556.324 9888.504 9920.450 242 0253.457 0633.457 0634.464 0636.497 0655.463 0992.529 1369.461 3193.376 3554.365 3931.370 3937.477 3942.463 4296.366 4312.376 4652.454	7.22 5.0 4.5 5.0: — (15.5 — 9.0 4.0: 15.0 — 7.6	V 723 15.4 11.2 13.5 8.6 6.8 12.4 12.6 5.8 14.8 11.0	V 731	CF 16.9 22.7 7.0 8.8 16.7 8.0 7.9 17.7 6.6 5.8 18.7 15.4 13.0 7.4 17.4	6.1 3.8 7.6 6.8 12.6 5.7 	(8.5) (8.2) (8.2) (8.2) (8.2) (8.2) (8.2) (8.2) (4.1)	
5027.341 5382.442 5385.465 5388.489 5744.497 5745.471 5764.404	15.5 15.5 2.0 — — 15.5	14.8 5.8 9.6 12.0 12.9 8.5	14.4 15.6 5.2 8.6 12.4 8.9	15.1 17.8 — 7.6	6.8 ————————————————————————————————————	(8.2 8.2 — (8.2	

JD hei	V 722	V 723	V 731	CF	CG	CO
242					J	
5770.348	6.0	15.9	11.8;	- 4		
5771.349	15.5	6.0	7.6	5.4	(16.1	3.6
5774.387		9.7	7.0 —	8.2 (17.7	(9.1	(6.0
5799.345	11.7			12.4	(9.1	
5802.357		_	_	18.7	5.2 11.1	1.8
5820.338	16.5		_	18.3	10.1	(8.2
5826 . 354	18.0:	-		5.4	8.6	7.0
6486.488				5.9	1.3	(8.2
6834.444		14.4	9.5		14.0	(8.2
6853.359		5.3	4.4	8.0	14.0	
6860.355	-	-		-	13.9	_
7716.219				8.9	7.8	_
7931.490		12.6	12.4	20.7		(8.2
7961.433				15.4		(0.2
7963.449	•	11.0	3.4			
9071.384	15.5	14.3	13.0	11.8		_
243						
0137.478		12.4	_	_		
0161.379		5.0	_		-	
2686.452	18.5	11. 4	3.0	18.3		4.1
3031.494		6.1	13.8	10.4	12.1	(8.2
3034.505	19.5	10.4	13.6	20.7	13.2	2.8
3412.426 3445.356			_		11.8	
3447.353	_	-		11.8	3.0	(8.2
3766.488	5.0		-	20.7	13.9	
3802.362	5.0	12.0	_	8.0	12.6	(8.2
3803.364	14.0	13.0	1.0	19.7		(8.2)
3806.452	14.0	13.9	17.6	21.7	11.1	4.2
3807.410		14.9	16.1	11.4	12.1	(8.2)
3823,343	_		11.6:	0.0	(9.1	
3824.333		13.4	11.0.	19.7	-	_
3828.355		15.4	_		-	~~~
3829.331		7.0:			_	_
4131.496	_		<u> </u>	18.7	11.1	12.2
4 183.358					13.9	12.2
4540. 369		13.0	-0.2			

CO 3meu (Serpentis)

Эта переменная звезда открыта Юз-Бойс [17]; при этом найдены следующие элементы:

Max hel JD = $2427956.60 + 0.4453 \cdot E$.

Переменная слишком слаба для наших снимков. Оценки затруднены еще и тем, что она является спутником более яркой звезды. Однако вблизи максимума ее блеск оценивается вполне уверенно, что позволило построить сезонные кривые блеска и определить моменты максимума:

Источник	Max hel JD	E	O-C
Симеиз Юз-Бойс (17)	2425799.312 7956.60	24618 19772	-0.030 006
Симеиз	33803.334		055
Одесса	6758.387 7111.403	0 +-793	.000 +.001
*	8170.447	+3172	.000

Остатки О — С вычислены относительно формулы

Max hel JD = $2436758.387 + 0,4451639 \cdot E$.

Из их хода видно, что период звезды переменен. Наблюдения помещены в табл. 126, 127.

Таблица 128. Симеизские наблюдения V 370 Ophiuchi

JD hel	s	JD hel	
242 1749.358 3931.369 5405.341 5412.335 8700.446	16.2 16.2 15.7 13.8 9.2	243 3083.353 3087.384 3091.370 3825.371	9.8 13.8 14.3 14.2

Таблица 129. Средняя кривая блеска V 370 Ophiuchi

Фаза	s	n ·	Фаза	s	n	Фаза	s	n
0°.037	8.0	3	0P.338	14.4	7	0 ^p .755	15.3	4
.106	8.5	3	.444	14.9	5	.845	14.4	4
.143	8.6	3	.511	15.5	3	.892	8 .8	4
216	13.1	3	.566	14.6	5	.941	5.3	2
.286	13.6	4	.660	15.4	6	.992	6.6	2

Глава VII. ЗВЕЗДЫ ТИПА RR ЛИРЫ СОЗВЕЗДИЯ ДЕВЫ

По снимкам симеизской планетной коллекции изучены 10 звезд типа RR Лиры. Использованы также визуальные наблюдения и оценки блеска на снимках одесской и московской коллекций.

Сведения о звездах сравнения помещены в таблице 130.

Таблица	130.	Степенные шкалы блеска	звезд сравнения
---------	------	------------------------	-----------------

Звезда	a	b	С	d	e
VX Vir WW Vir	0.0	8.8	_	_	_
Одесская	- -9.5	0.0		10.5	14.9
Симеизская	-	0.0	6.3	14.5	17.7
Визуальная	_		0.0	14.4	10.5
AM Vir	0.0	10 5	01.7		
Фотографическая	0.0	13.5	21.7	-	_
Визуальная	0.0	6.8	10.9		
BL Vir	0.0	9.0	11.0	16.6	20.8
BM Vir					
Симеизская	0.0	15.2	18.3	27.5	
Московская	0.0	11.0	17.8	23.3	
BQ Vir	0.0	6.5	12.5		_
BŬ Vir	0.0	12.8	18.0		
BX Vir					
Симеизская	0.0	11.2			-
Московская	0.0	11.2	17.0		_
CY Vir	0.0	8.5	17.9	28.3	_
CZ Vir	0.0	4.5	15.7		

VX Девы (Virginis)

Блеск этой звезды оценен на симеизских снимках. Удачное расположение наблюдений во времени позволило определить ее период и построить средние сезонные кривые блеска, из которых определены три момента перехода через середину восходящей ветви кривой:

Момент JD	Е	O - C
24 19865.272	0	0.005
28981.367	16788	+.013
33002.345	24193	009

Остатки О — С вычислены относительно формулы

$$T(5^{s}.0) = 2419865.277 + 0,5430115 \cdot E; P^{-1} = 1,841581624.$$

Таблица 131. Средняя кривая блеска VX Virginis

_	Фаза	S	n	Фаза	s	n	Фаза	s	n
	0 ^p .045 .082 .166 .269 .319	1.9 1.3 0.5 5.4 7.6	4 7 4 6 4	0 ^p .481 .530 .612 .721 .786	11.1 10.9 11.5 10.8 10.0	7 7 7 6 6	0 ^p .834 .873 .934 .970 .978	10.3 11.8 10.6 4.2 7.8	4 4 4 4

По этой же формуле вычислена общая средняя кривая блеска (табл. 131), а также определен возраст максимума $0^p.11$, что позволило получить окончательную формулу:

Max hel JD =
$$2419865.337 + 0.5430115 \cdot E$$
;
(Max — Min) : P = 0.22 .

WW Девы (Virginis)

Эта переменная звезда наблюдалась автором визуально и на снимках одесской и симеизской коллекций. Определены предварительные элементы, с помощью которых получена серия сезонных кривых блеска. Из них найдены восемь моментов максимума блеска:

Источник	Max hel JD	E	O-C
Симеиз	2420957.290	-24195	-0.011
»	6421.483	 15809	+.010
>>	32647.354	-6254	+.008
Одесса	6722.340	0	004
»	7019.463	+456	- .003
»	7378.493	+1007	+.005
»	7786.392	∔1633	+.013
	8143 426	± 2181	020

Остатки О'— С вычислены относительно формулы Max hel JD = $2436722.344 + 0.6515827 \cdot E$; $P^{-1} = 1.534724602$.

По этой же формуле вычислена средняя кривая блеска по одесским снимкам (табл. 132). Все наблюдения приведены в табл. 133.

Таблица 132. Средняя кривая блеска WW Virginis по одесским наблюдениям

Таолица 132. Средняя кривая олеска								
Фаза	s	n	Фаза	S	n	Фаза	s	n
0 ^p .012 .094 .192 .276 .358 .393 .428	0.0 1.5 7.9 12.1 13.4 13.7	5 4 5 5 5 5 5 5	0 ^p .477 .550 .584 .638 .691 .732	14.5 14.3 13.6 13.6 14.5 13.6 14.9	555555	0 ^p .844 .877 .911 .952 .994	14.1 14.2 8.9 0.0 —5.0	5 4 3 3 2

Таблица 133. Наблюдения WW Virginis

1 аолица	1 а о л и ца 133. паолюдения ww virginis								
JD hel	s	JD hel	s	JD hel	s	JD hel	s		
Визуальные									
•		0.40		0.40		0.40			
243	11 -	243	10.5	243	4.0	243	.0.5		
6701.304 .314	11.5 11.5	6702.411 .432	12.5 12.5	6703.442 .446	4.8 5.2	7101.324 .331	12.5 13.3		
6702.317	11.5	.432 .451	12.5	.453	5.2 5.8	.337	13.4		
.358	13.5	6703.310	12.5	6720.336	9.6	.350	13.4		
.368	12.5	.344	12.5	.401	8.4	.360	13.4		
.376	12.5	.385	12.5	6722.344	6.3	.375	13.4		
.399	12.5	.428	6.3	.366	7.6	.385	12.5		
Симеизские	фотогра	фические							
241		242		242		242			
9505.393	17.7	0959.472	18.7	3522.374	18.7	9018.377	16.1		
9505.393	17.7	0959.472	14.5	3522.374	17.7	9348.504	6.3		
9513.463	9.4	0977.408	16.3	4610.429	16.6	9348.504	6.3		
9885.334	18.7	0977.408	14.5	4978.461	17.7	9366.414	17.7		
9885.334	18.7	0983.462	8.6	4 978.461	17.7	9366.414	18.7		
242		0983.462	9.8	5003.314	16.3	0.40			
0243.354	17.7	0985.304	0.0	5003.314	16.6	243	100		
0243.354	17.7	0985.304	5.4	6069.553	16.3	0107.449	16.6		
0249.354 0249.354	17.7 17.7	1007.345 1007.345	14.5 16.3	6069.553 6087.341	15.6 12.0	0107.449 2644.407	16.3 16.3		
0266.345	18.7	1010.407	16.6	6087.341	12.3	2647.370	3.6		
0266.345	17.7	1050.315	18.7	6087.438	13.1	2647.370	3.9		
0580.540	20.7	1050.315	18.7	6087.438	11.8	3001.500	19.7		
0580.540	18.7	1318.487	12.7	6421.561	4.2	3035.377	16.4		
0620.331	16.3	1318.487	16.6	6421.561	7.2	3415.348	18.7		
0620.331	17.7	1319.544	4.2	6454.324	17.7	3422.324	13.1		
0956.400	16.5	1338.408	8.4	7165.559	5.3	3422.324	12.7		
0957.373	8.4	1338.408	11.8	7165.559	6.3	4119.436	10.8		
0957.373 0958.506	8.4 12.7	1342.472 3521.527	5.5 16.6	7543.368 7543.368	21.7 20.7	4119.436 4455.482	10.8 3.6		
0958.506	12.2	3521.527	18.7	9018.377	16.3	4455.482	3.2		
0000.000	12.2	0021.02.	10	0010.0.	.0.0	11001102	J		
-		<u> </u>		1		1	-		
JD) hel	s	JD hel	s	JD hel	S			
Одесс	кие фот	югр аф ически	ıe						
243			243		243				
	8.453	1.5	6667.418	14.9	7016.456	3 13.2			
	3.448	15.9	6668.437	12.2	7017.469				
	4.358	15.9	6702.398	13.8	7019.47				
634	5.350	14.9	6714.347	13.0	7020.50	3 12.8			
	7.348	16.9	6715.358	12.0	7028.49				
	8.595	12.8	6716.376	13.4	7044.380				
	2.635	14.9	6722.340	- 6.3	7046.44				
	3.585 60.483	1.5	6960.518	15.9 14.9	7052.408 7077.368				
	61.467	0.0 13.4	6971.591 6997.601	14.9 14.9	7077.30				
	3.479	15.9	7015.493	8.3	7111.34				
300		10.0	. 5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0.0		_			

JD hel	s	JD hei	s	JD hel	s
Одесские фот	ографическ	ие			
243		243		243	
7373.506	15.9	77 34. 518	13.6	7807.351	8.8
7377.538	16.9	. 541	13.1	7808.342	14.9
.566	14.9	7758.468	8.7	.366	12.3
7378.484	3.8	.494	9.0	7810.339	12.7
7398.458	13.6	7759.449	16.4	7812.337	13.1
.485	13.1	.478	12.0	8085.563	4.3
7400.458	16.9	7761.467	15.9	8090.575	14.9
.482	14.0	7761.492	12.0	8106.484	12.4
7405.427	13.0	7764.471	12.0	8138.422	11.7
.450	13.1	7779.387	1 2. 2	.450	13.0
7406.443	10.7	7780.401	16 .4	8141.456	1.0
7425.379	3.0	.427	14.0	8143.411	— 2.0
.407	1.0	7781.413	13.0	8144.406	11.6
7426.418	14.9	.438	11.6	8162.349	0.0
7432.332	8.6	7783.404	11.5	816 3. 35 7	10.5
.361	13.1	7786.392	 1.0	.381	10.5
7729.551	17.4	7789.401	13.0	8165.325	16.4
.579	14.0	7790.374	3.0	.349	10.5

AM Девы (Virginis)

Эту звезду автор наблюдал визуально (табл. 134). При построении средней визуальной кривой блеска использована формула А. В. Соловьева [2]:

Max hel JD =
$$2426859.274 + 0.6150922 \cdot E$$
; $P^{-1} = 1.6257725$.

Из средней визуальной кривой блеска (табл. 135) определен момент максимума блеска Мах JD = 2431230.089. Кроме того, автор оценил блеск звезды на симеизских снимках (см. табл. 136). В . Ф. Карамыш исследовал снимки одесской коллекции и вычислил два средних момента максимума. К сожалению, симеизские снимки неудачно расположены во времени и определить по ним моменты максимума блеска не удалось. Все известные автору моменты максимума приведены в следующей сводке:

Флоря [3] 6859.277 0 .000 +.00 » 7242.472 +62300500 Соловьев 7601.075 +1206 +.001 +.00 » 7962.750 +1794 +.004 +.00 » 8310.257 +23590140 Цесевич 31230.089 +7106006 .00 Карамыш 7078.354 +16614003 +.0	Источник	Max hel JD	Ε	O A	O B
Соловьев 7601.075 +1206 +.001 +.00 » 7962.750 +1794 +.004 +.00 » 8310.257 +23590140 Цесевич 31230.089 +7106006 .0 Карамыш 7078.354 +16614003 +.0		6859.277	0	.000	-0.006: + .002
» 7962.750 +1794 +.004 +.00 » 8310.257 +23590140 Цесевич 31230.089 +7106006 .0 Карамыш 7078.354 +16614003 +.0	» Соловьев				-0.003 +0.004
Цесевич 31230.089 +7106006 .0 Карамыш 7078.354 +16614003 +.0	»				+.007 010
1(upumbin	Цесевич	31230.089	- 7106	006	.000
	Карамыш »				÷.010 ÷.008

Остатки О — А и О — В вычислены относительно формул:

Max hel JD =
$$2426859.277 + 0.6150885 \cdot E$$
,

Max hel JD = $2426859.275 + 0.61508784 \cdot E$.

Ход остатков с изменением номера E таков, что можно считать период звезды постоянным на протяжении 28 тысяч циклов.

Таблица 134. Визуальные наблюдения AM Virginis

таолица	104. Dhayan	івные наолю,	CHINA 7674	viigiiii3	
JD hel	s	JD hel	s	JD hel	s
243		243		243	
1178,421	1.0	1225.334	8.7	1241.239	7.9
1180.458	8.5	.348	8.7	.297	7.9
.494	9.6	.369	8.9	1252.195	4.3
1213.303	8.9	1228.239	2.7	.211	5.4
.335	8.5	1230.163	6.0	.228	4.3
.343	9.5	.176	5.4	.245	4.8
.356	9.9	.213	6.5	.265	4.3
.392	10.0	.220	6.0	1254.181	8.0
1215.290	7.6	.250	6.2	1256.232	9.5
.312	5.4	.269	7.0	1257.221	8.0
.322	5.0	.306	8.0	.248	7.3
.327	4.0	.340	8.7	.271	7.6
.338	2.5	.362	9.8	1259.201	8.9
.343	2.0	1 231. 173	9.8	.237	9.4
.360	4.8	.250	8.9	1261.228	9.4
.369	4.2	.277	2.9	1262.196	7.3
1219.201	9.4	.303	-2.0	.212	7.9
1221.176	12.9	.320	1.0	1265.201	3.0
.237	7.6	.333	1.0	.217	4.0
.247	8.5	1232.216	9.8	1266.194	9.4
.281	9.9	.271	9.9	.206	9.9
1224.192	9.5	.298	9.9	.214	9.2
.227	9.1	1235.162	7.9	.220	9.8
.256	9.8	.266	9.4	.233	9.9
.302	10.4	.288	9.8	.262	9.5
.318	10.4	1236.268	4.5	1268.211	5.4
1225.271	8.9	.310	6.0	1269.186	10.4
.3 13	8.0	.337	7.0	1270.214	5.4

Таблица 135. Средняя визуальная кривая блеска AM Virginis

Фаза	S	n	Фаза	s	n	Фаза	s	n
0P.017 .068 .109 .157 .192 .244 .305	4.1 6.4 7.3 7.1 7.1 8.5 9.0	4 5 5 5 5 5 5 5	0P.378 .443 .532 .601 .676 .717	9.4 10.2 9.6 9.5 9.4 9.4 9.7	5 5 5 5 4 4 2	0P.822 .889 .925 .944 .952 .978	9.4 4.9 3.5 4.0 1.3 2.6	2 3 4 3 3 5

Таблица 136. Симеизские наблюдения AM Virginis

JD hel	s	JD hel	s	JD hel	s
242 0600.336 0600.336 0603.357 0622.334 0622.334 0624.310 0624.310 0976.382 0976.382 3529.416 4266.450 4266.450 4266.450 5733.423 5733.423 6087.438 6087.438 6087.438 6087.438	14.5 13.5 12.4 7.2 8.2 11.8 10.8 16.0 14.7 13.5 17.1 17.6 15.3 15.3 10.1 10.4 16.8 10.1	242 6803.382 7164.489 7164.489 7181.451 7181.451 7188.428 7192.408 7192.408 7206.361 7206.361 7213.359 7213.359 7218.321 7218.321 7241.352 7241.352 7245.355	10.1 11.6 11.2 14.9 15.5 8.7 8.1 14.7 17.1 13.5 11.2 16.6 15.8 14.7 14.7 10.1 7.9 13.5	242 7535.398 7541.422 7541.422 7541.426 7542.426 8245.527 8245.527 8635.410 8635.410 243 2646.428 2646.428 3747.430 3775.353 3775.353 4502.338 4502.338	12.0 7.9 7.6 17.1 16.8 15.8 17.1 15.5 16.6 13.5 12.4 13.5 11.7 9.0 7.5 7.3

BL Девы (Virginis)

Бойс [6] вывела формулу, которой автор воспользовался для построения сезонных кривых блеска из оценок симеизских снимков:

Max hel JD =
$$2426840.40 + 0.66865 \cdot E$$
.

Получены следующие моменты максимума, включая максимум Бойс:

Источник	Max hel JD	$E O \longrightarrow B$
Симеиз	2419511.41	0 + 0.006
»	20958. 3 5	2164 + .010
»	6030.57	$9750 \rightarrow .069$
Бойс	6840. 40	10961 + .038
Симеиз	8246.50	13064 → .010
>	33737.39	21276 + .012

Остатки О — В вычислены относительно новой формулы Max hel JD = $2419511.404 + 0.6686395 \cdot E$; $P^{-1} = 1.49557422$. Наблюдения автора приведены в табл. 137.

Таблица 137. Наблюдения на симеизских планетных снимках звезд созвездия Virgo

JD hel	VX	BL	вм	BQ	BU	ВХ
241 9481.395	-2.0 -2.0			· <u> </u>		_
9482.436	6.9 6.6	19.6	20.3	3.7	_	
9498.285	-1.0	19.1 17.6	20.3 14.2	2.7 7.8	11.8	
9511.414	2.6 8.8	18.6 9.9	14.2 9.1	12.5 9.8	11.8 —	_
9513.375	10.8	7.7 —	10.7 17.2	10.4	_	10.2
9513.463	_	_	17.3 —	10.7	16.8	10.2
9835.474 9858.439	3.5			4.4		_
9859. 35 6	2.0	_	_	8.2 —	_	_
9863.356	2.0 12.8		18.3	-	_	_
9865.424	3.5 5.3	(16.6 18.6	$\begin{array}{c} 18.3 \\ 20.3 \end{array}$	$5.2 \\ 4.4$	_	_
9892.326	=	_	_	_	_	(11.2 (11.2
9922.333 *	_	_	$\begin{array}{c} 18.3 \\ 21.3 \end{array}$	8.7 8.2:	(12.8	(11.2 (11.2
242 0191.486		_		3.4	_	`
0215.41:	_		_	4.8 10.2		_
»	_	6.0	_	9.6	12.8	
0239.41: *	-	_	_	3.8 4.4	_	_
0247.420	_	_	18.3	$\begin{array}{c} 10.9 \\ 9.6 \end{array}$	(12.8	_
0571.489		19.6 19.8	_		_	_
.0597.401	7.8 7.8				_	_
0608.392	6.6 10.8	17.6 19.6	20.3 17.3	$8.3 \\ 5.6$	-	
0929.452	(8.8 (8.8	_	_	-	_	-
.0929.568	5.3 8.8	9.6 10.5	20.3 17.0	10.4 10.0	$\frac{15.8}{11.8}$	_
0956.320 » 0958.347		9.2 8.5				
0958.347 » 0960.326	9.8 7.8	7.7 6.0	_	$9.4 \\ 8.3$	14.8 14.8	-
0960.326 » 0975.356		8.2 11.0	_	_		_
0975.356 » 0977.322		19.0 19.2	_			_
0977.322	10.8	17.6		10.4	18.0	-

JD hel	VX	BL	ВМ	BQ	BU	BX
JD hel 242 0978.376 0981.362 0983.367 0988.369 0991.288 1010.328 1665.507 3848.528 4231.516 4620.363 4621.287 5716.439 6030.541 6033.509 6060.483 6061.457 6070.445 6070.507 6070.570 6084.396 6397.562 6420.483 6423.459 6424.458 7165.455 7510.552	8.8 — — — — — — — — — — — — — — — — — —	BL 15.8 12.9 9.5 18.6 18.1 19.4 14.5 16.6 — 15.8 15.7 15.7 15.5 14.7 10.0 8.0 17.6 — 10.0 15.1 — 10.0 8.6 19.0 — 13.8	BM	10.4 8.7 8.3 2.9 3.4 	18.0 13.8 15.8 5.1 15.8 10.4 11.0 9.6 14.3 11.0 11.4 10.6 18.0 10.6 11.0 11.4 13.8	
7513.478 7541.354 7886.374 7896.347	13.8 7.9 — 10.8 12.8 12.8	18.6 	21.1 4.3 6.1 13.5	10.8 2.7 3.5 9.8 3.4 4.1	15.4 14.8 12.8 — 11.5 3.9 4.3	11.2 15.2 (16.2 6.1

JD hel	vx	BL	вм	BQ	BU	вх
242 7896.461 7898.472 7904.518 7928.361 8246.514 8249.534 8252.498 8257.512 8276.418 8278.340 8280.329 8612.512 8624.339 8631.399 8635.336 8637.398 8981.450 8992.488 9339.460 9348.504 9362.331 9721.446 243 2650.373	4.4 0.0 11.8 11.8	18.6 18.3			12.8 14.9	(11.2: 9.2 — 9.4 11.2 12.2 11.2 — (11.2.2 — 15.2 14.2 — 9.2 9.2 — — — — — — — — — — — — — — — — — — —
2996.403 2999.416	8.8 6.8 4.9 —	 15.1	15.2 14.2 12.6	3.1 5.2 3.1	9.8 	6.7 — —
3002.339 3031.322	1.0 2.3 7.9 7.8	15.2 18.0 19.4 10.0 12.1	13.2 15.2 11.4 13.7	8.3 3.7 2.5	18.0 16.3	

vx	BL	вм	BQ	BU	вх
12.8	16.6	15.2	13.5	17.0	_
8.8	19.1	18.3	10.0	20.0	_
8.8	18.3				16.2
10.8	14.7				14.2
-					10.2
	_				10.0
11.8	10.4				_
11.3	9.5		7. 5	9.1	
-	_		_		12.2
		21.4	10.4	(12.8)	14.2
	_	_		_	9.2
_	9.6	_			-
_	12.9				
_					5.0
	11.0	12.2	6.2	14.9	9.9
	_				(11.2)
			6.2	12.8	16.2
_	_	_	_		(11.2)
	12.8 8.8 8.8 10.8	12.8 16.6 8.8 19.1 8.8 18.3 10.8 14.7 — — — 11.8 10.4 11.3 9.5 — — — — — — — 9.6	12.8 16.6 15.2 8.8 19.1 18.3 8.8 18.3 13.4 10.8 14.7 13.8 — — 11.7 — — 12.9 11.8 10.4 15.2 11.3 9.5 15.2 — — 20.0 — — 21.4 — — 9.6 — — 12.9 — — 11.0 —	12.8	12.8 16.6 15.2 13.5 17.0 8.8 19.1 18.3 10.0 20.0 8.8 18.3 13.4 7.5 12.8: 10.8 14.7 13.8 6.2 12.8 — — 11.7 8.9 9.0 — — 12.9 9.1 7.9 11.8 10.4 15.2 8.3 9.8 11.3 9.5 15.2 7.5 9.1 — — 20.0 — — — — 21.4 10.4 (12.8 — — — — — — 10.4 (12.8 — — — — — 12.9 — — — 11.0 — 7.8 12.8 — 11.0 12.2 6.2 14.9

ВМ Девы (Virginis)

С помощью элементов, найденных Бойс [6], получены сезонные кривые блеска из симеизских наблюдений. По этим кривым определены следующие моменты максимумов блеска:

Источник	Max hel JD	Ε	0-C
Симеиз	2419511.48 26397.57		+0.004 -0.007
Бойс	6840.30 8637.41	10909	003 + .003
Симеиз	33734.47		+ .005

Остатки О — С вычислены относительно формулы

Max hel JD = $2419511.476 + 0.6718147 \cdot E$; $P^{-1} = 1.488505685$, которая также использована для построения полной средней кривой блеска (табл. 138). Наблюдения приведены в табл. 137, 139.

Таблица 138. Средняя кривая блеска BM Virginis

Фаза	s	n	Фаза	s	n	Фаза	\$	n
0 ^p .016 .065 .099 .154 .232 .355	6.3 8.1 8.6 11.0 13.2 13.9	6 6 8 4 5 8	0P.428 .524 .551 .647 .764 .824	13.8 16.9 18.7 16.9 19.1 17.5	7 6 5 11 6 5	0P.844 .907 .930 .982	18.8 11.1 9.0 6.0	8 4 4 4

Таблица 139. Наблюдения на московских снимках ВМ и ВХ Virginis

N п/п	JD hel	вм	вх	N п/п	JD hel	вм	вх
-	243				243		
155	3052.341	21.5	_	2366	7080.297	14.6	3.4
174	3061.458	7.0	15.6	2375	7087.301	20.3	17.0
337	3358.483	15.9	18.0	2388	7099.323	16.2	15.
359	3388.379	21.1	7.8	2390	7100.318	12.1	2.5
602	4077.423	18.8	—	2394	7102.316	11.0	12.
2294	7051.338	14.4	15.1	2400	7103.317	15.9	14.
2307	7052.331	17.8	14.1	2405	7106.315	10.0	8.
2347	7078.321	15.5		2421a	7113.315	22.4	17.
2356	7079.295	20.3	15.4	2441	7128.301	17.3	11.

BQ Девы (Virginis)

Из симеизских наблюдений получены сезонные кривые блеска, по которым определены следующие моменты максимумов:

Источник	Max hel JD	Ε	0-C
Симеиз	2419858.345	0	0.011
»	20608.134	1179	+ .037
»	4231.516	6877	.010
»	6030.522	9706	.001
Войс	6839.40	10978	003
Симеиз	7896.300	12640	+ .010
»	8 631.354	13796	. .051
»	9721.438:	15510	+ .079:
»	33031.318	20715	+ .035

Остатки О—С вычислены относительно окончательной формулы Мах hel JD = $2419858.356 + 0.6359125 \cdot E$; $P^{-1} = 1.57254339$, которая использована для вывода средней кривой блеска (табл. 140).

Таблица 140. Средняя кривая блеска BQ Virginis

Фаза	s	n	Фаза	s	n	Фаза	s	n
0P.014 .062 .128 .167 .229 .285	3.8 3.1 4.4 6.9 6.0 9.6 9.7	6 8 8 5 4	0P.413 .457 .493 .528 .615 .677	8.8 8.7 9.5 8.6 8.7 9.1	6 6 5 4 7 7 5	0P.779 .829 .875 .914 .988	10.2 7.3 3.7 7.0 2.4	6 6 4 3 4

Хотя остатки О — С довольно велики, нет пока оснований считать, что период звезды переменен.

ВU Девы (Virginis)

Эта звезда слабая, ее трудно оценивать на наших снимках, поэтому наблюдения не очень уверенные. Однако из них удалось получить несколько сезонных моментов максимума:

Источник	Max hel JD	E O - C
Симеиз » » Одесса		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Остатки О — С вычислены относительно формулы

Max hel JD = $2420247.47 + 0.5813090 \cdot E$; $P^{-1} = 1.72025549$,

которая использована также при выводе средней кривой блеска (табл. 141). Следует отметить, что момент максимума, определенный Бойс [6], этим элементам не удовлетворяет. Наблюдения автора приведены в табл. 137, 142.

Таблица 141. Средняя кривая блеска BU Virginis

Фаза	s	n	Фаза	s	n	Фаза	s	n
0P.012 .122 .199 .274 .328 .370	7.0 10.0 11.6 12.6 15.4 14.2	6 7 7 6 6 4	0P.394 .456 .514 .575 .665 .739	15.4 14.6 14.9 14.1 16.0 16.4	4 6 5 7 7 4	0 ^p .845 .890 .913 .969	13.7 12.1 9.3 8.4	3 4 3 2

Таблица 142. Одесские наблюдения BU и BX Virginis

JD hel	BU	BX	JD hel	BU	вх
243 6288.452 6344.357 6347.347 6608.596 6612.636	14.5 15.8 14.5: 14.9 13.8	11.2 (11.2 4.7 (11.2 13.2	243 6613.589 6661.466 6663.484 6667.417 6668.442	8.2 10.6 13.8 16.7 14.1	11.2 1.9 14.2 6.0 13.2

ВХ Девы (Virginis)

Переменная слишком слаба для тех снимков, которыми располагал автор. Однако в максимуме блеска она на этих снимках видна. Симеизские и одесские наблюдения позволили определить сезонные моменты максимумов:

Источник	Max hel JD	E	0-0
Симеиз	2426070.552	0	+ 0.008
Бойс	6860.30	943	
Симеиз	8637.639	3065	· .020
»	33734.224	9150	+ .019
Одесса	6661.465	12645	008

Остатки О — С вычислены относительно новой формулы

Max hel JD = $2426070.544 + 0.8375589 \cdot E$; $P^{-1} = 1.19394588$.

Проведенные автором оценки блеска переменной на нескольких московских снимках (см. табл. 139) подтвердили справедливость этой формулы.

СУ Девы (Virginis)

После построения сезонных кривых блеска удалось определить следующие моменты максимума:

Источник	Max hel JD	E	0 A	0 - B
Симеиз	2420636.380	0	0.000	0.000
Одесса	36971.616	26660	+ .014	007
*	7405.432	27368	+ .022	.000
»	7764.486	27954	.019	.003
»	8144,385	28574	-1 029	→ 007

Остатки О — А вычислены относительно формулы

Max hel JD = $2420636.380 + 0.612724 \cdot E$.

По способу наименьших квадратов эта формула была улучшена: Мах hel $JD = 2420636.380 + 0.61272478 \cdot E$; $P^{-1} = 1.63205412$ и использована для получения средних кривых блеска, представленных в табл. 143. Наблюдения приведены в табл. 144.

Таблица 143. Средние кривые блеска СУ Virginis

Фаза	s	n	Фаза	5	n	Фаза	s	n
Симеизски	е наблюде	ния			-			
0 ^p .032 .086 .135 .260 .334	7.8 8.3 11.1 16.7 16.4	3 2 6 6 6	0P.482 .535 .584 .649 .728	23.0 25.2 24.4 26.2 25.2	4 4 6 6 4	0 ^p .823 .868 .894 .968	25.1 24.6 24.2 9.0	6 4 3 2
	наблюдени.	я						
0 ^p .017 .053 .112 .144 .186 .239	2.3 5.6 10.3 10.1 14.0 14.6	3 4 5 4 5 5	0P.309 .405 .544 .710 .814	15.6 21.4 21.8 22.5 22.2 20.8	5 4 5 4 4	0 ^p .897 .911 .949 .991	21.4 16.4 6.2 3.1	1 1 2 3

Таблица 144. Фотографические наблюдения СУ и CZ Virginis

JD hel	CY	CZ	JD hel	CY	CZ
Симеизские 241 9530.392 9888.403 9900.432 242 0239.41 ± 0243.41 ± 0245.542 0277.411 0608.549 0636.398 0960.432 1008.327 1369.353 1371.368 3938.434 4268.356 4645.375 6074.538 6450.400	14.1 17.9	2.	0136.377 0138.433 11 0146.386 12 0255.485 13 002.444 13 034.416 13 3748.440 14 123.390 15 4129.376	26.4 20.9 26.0 25.2 25.7 24.9 24.5 27.2 26.0 26.0 26.0 26.0 26.2 23.1 24.1 25.2 26.4 8.5 8.1 16.4 15.8 26.4 26.2 26.2 26.4 19.9 17.9	14.8 15.7 13.7 14.7 14.7 14.7 14.8 15.7 11.6 15.7 15.4 8.5: 15.7: 11.0 10.1 15.7 14.8 14.8 0.5 4.5 14.7 9.6 4.5 14.7
Одесские 243 6699.433 6701.418 6702.430 6703.440 6715.389 6716.40° 6722.380 6726.355 6729.34 6730.35	5. 5. 7 10. 9 23. 7 — 9 9. 4 — 7 10. 2 14.	6 17 9 1 - 0 5 15 5 0 4	.5 7028.524 .8 7029.53	1 24.1 6 13.9 7.6 2 24.1 4 25.2 1 26.0 4 14.8 8 13.2 7 10.5	12.3 13.5 16.7 12.0 4.5 15.7

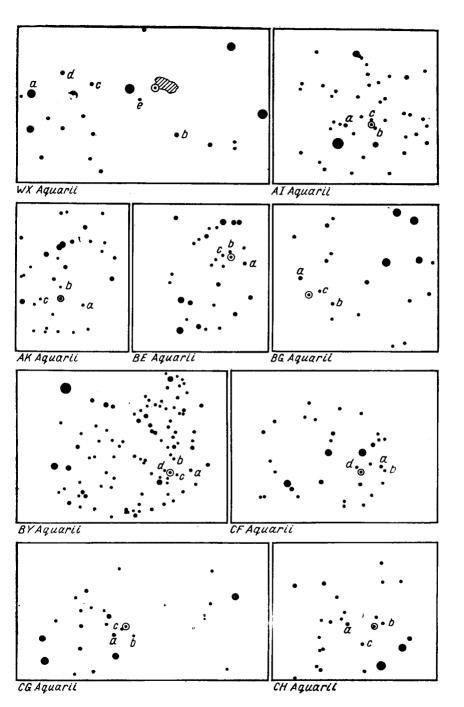
JD he	CY	CZ	JD hel	CY	CZ
243 7377.592		6 . 7	243		
7378.524	12.8	11.5	7763.490 .513	20.9	15.7
.550	11.3	4.5	.513 7764.506	17.0 6.1	14.7
7400.505	6.8	11.5	7781.463	24.9	14.7
.529	6.4	15.7	7786.452	22.9	12.7 4.0
7402.446	8.5	8.5	7808.390	20.9	14.9
.498	13.7	7.9	7810.362	22.9	14.9
74 05.472	5.7	1.5	7813.362	18.9	4.5
.498	11.6	4.5	7817.362		15.7
742 6.442		(10.5	7818.371	5.6	15.7
7 427.382	-	6.5	.345	21.4	14.7
.428	21.9	15.3	8141.482	21.9	13.7
7429.413	8.5	8.5	.509	15.1	-0.5
7432.389	1.1	6.5	8143.435	21.9	15.7
7729.603	5.7	6.4	.460	25.7	13.5
7734.564	17.9	15.7	8144.445	7.4	13.4
.588	10.8	13.1	.468	9.7	14.4
7758.517	16.2	3.5	8162.372	24.5	12.9
.542	19.9	3.5	8163,404	4.8	11.6
7759.504 .532	16.4	4.5	8165.374	18.9	3.5
.532 7761.515	16.4	1.5	8170.369	22.9	15.7
.539	14.5	14.9	8172.374		15.7
.558	12.8	14.7	.401	23.6	13.8

CZ Девы (Virginis)

Звезда изучалась автором по одесским и симеизским снимкам. После определения предварительных элементов построены сезонные кривые блеска и найдены следующие моменты максимума:

Источник	Max hel JD	Е	O - C
Симеиз	2419530.392		+0.001
»	24268.336	-24082	+ .002
»	33002.457	— 7185	006
Одесса	6716.414	0	005
*	7405.45 6	+ 1333	+ .004
*	7 759.530	+ 2018	.001
»	8141.529	+ 2757	+ .005

Остатки О — С вычислены относительно формулы


Max hel JD =
$$2436716.419 + 0.5169041 \cdot E$$
; $P^{-1} = 1.93459483$,

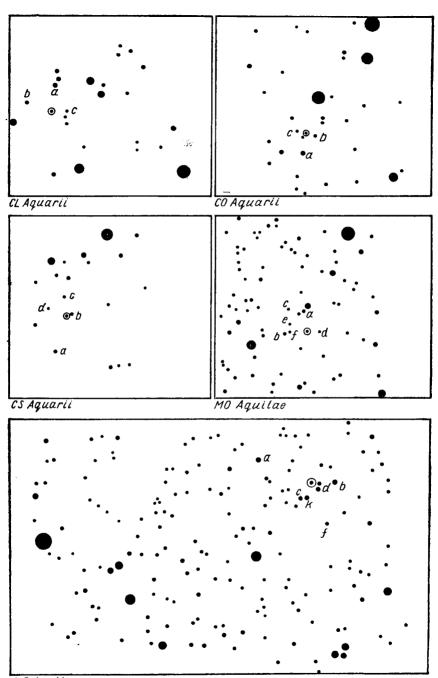
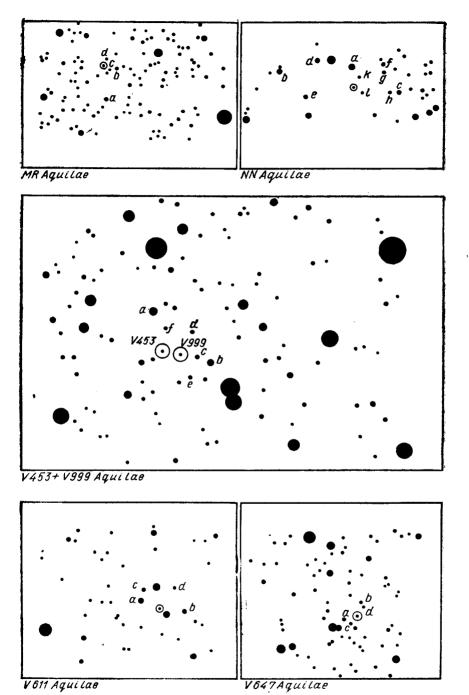
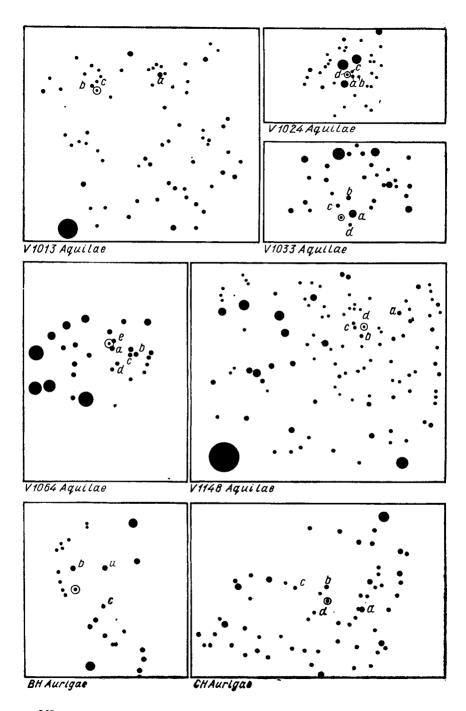
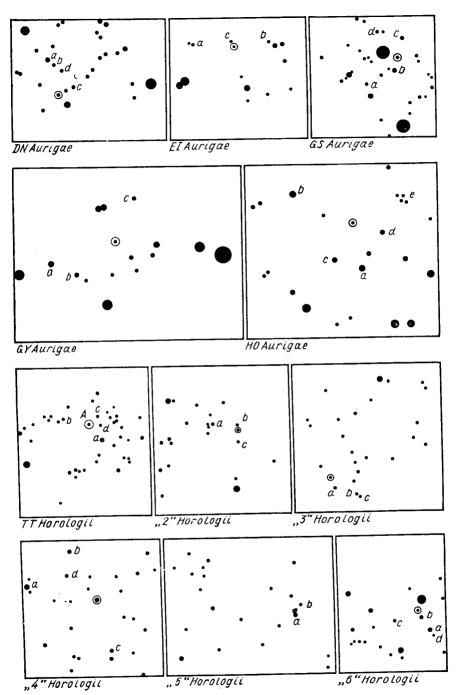
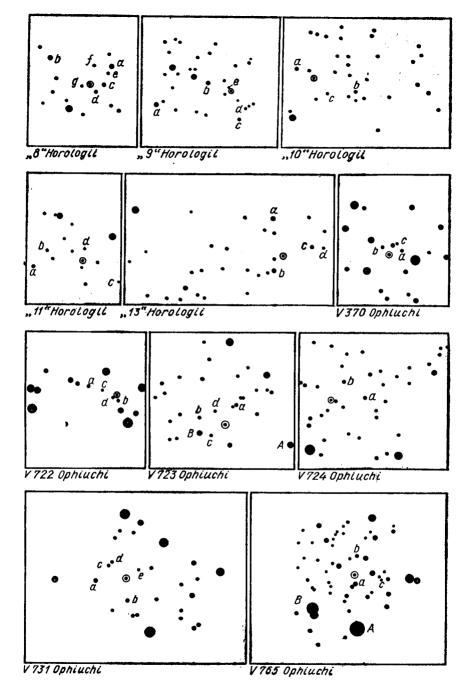

которая также использована при построении средних кривых блеска (табл. 145). Наблюдения приведены в табл. 144.

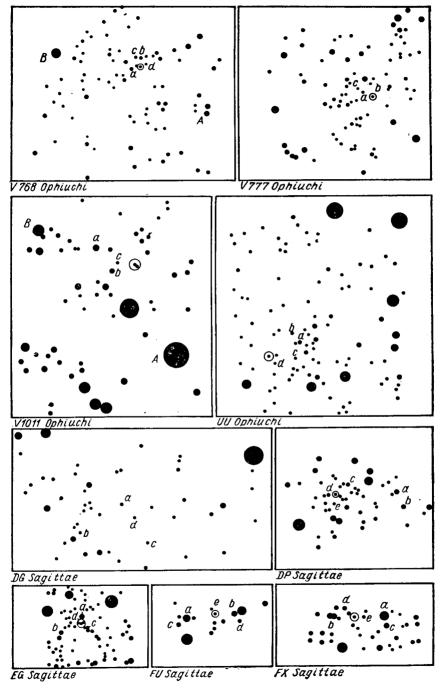
Таблица 145. Средние кривые блеска CZ Virginis

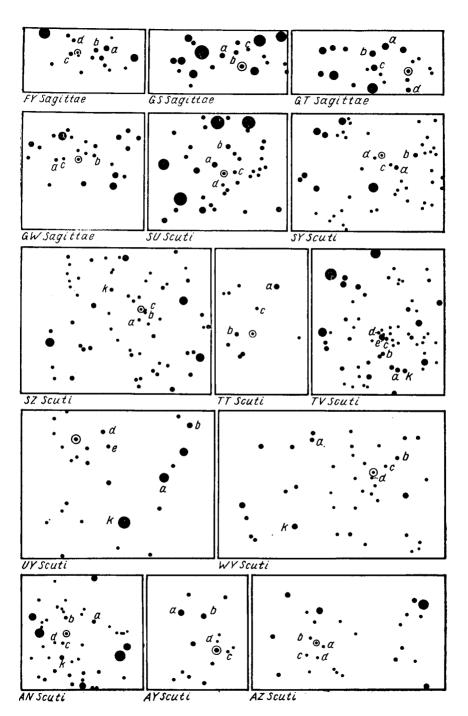

Фаза	\$	n	Фаза	s	n	Фаза	s	n
Симеизски	е наблюде	гния						
0 ^p .001 .042 .172 ·274 .413	1.8 3.5 6.5 11.3 14.8	2 2 4 4 2	0P.520 .542 .576 .635 .727	15.5 15.0 14.3 15.6 15.0	4 5 5 6 5	0P.778 .807 .878 .963	14.9 14.7 13.8 2.5	5 4 2 2
Одесские н	<i>аблюдени</i>	я						
0 ^p .006 .038 .079 .124 .238 .340	1.0 2.5 4.1 5.4 9.5 11.6	3 2 4 6 4 7	0P.443 .520 .656 .700 .742 .810	12.2 14.7 14.5 14.6 14.8 14.9	5 5 5 5 5	0P.885 .912 .948 .976	16.0 12.6 4.5 —0,4	3 2 3 3

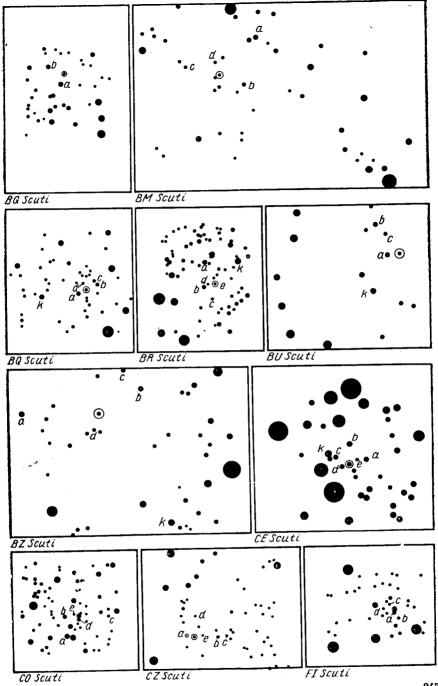

КАРТЫ ОКРЕСТНОСТЕЙ ПЕРЕМЕННЫХ ЗВЕЗД С ОБОЗНАЧЕНИЕМ ЗВЕЗД СРАВНЕНИЯ



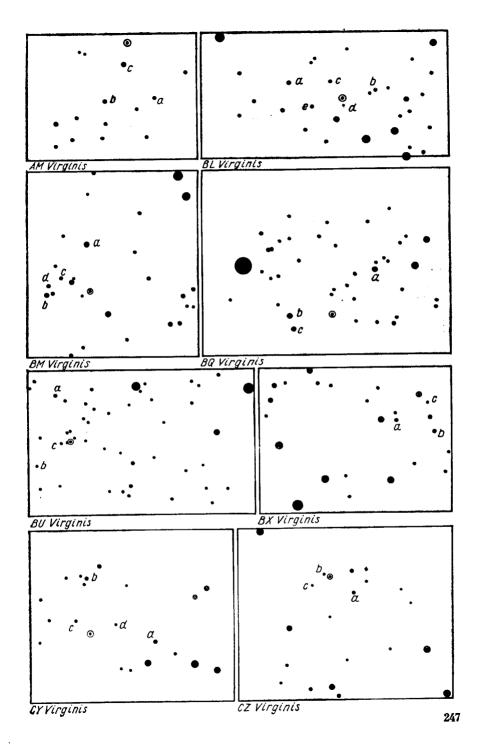

MP Aquilae

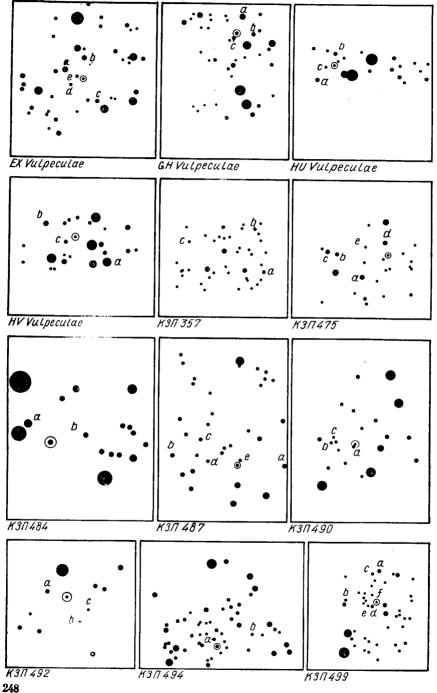


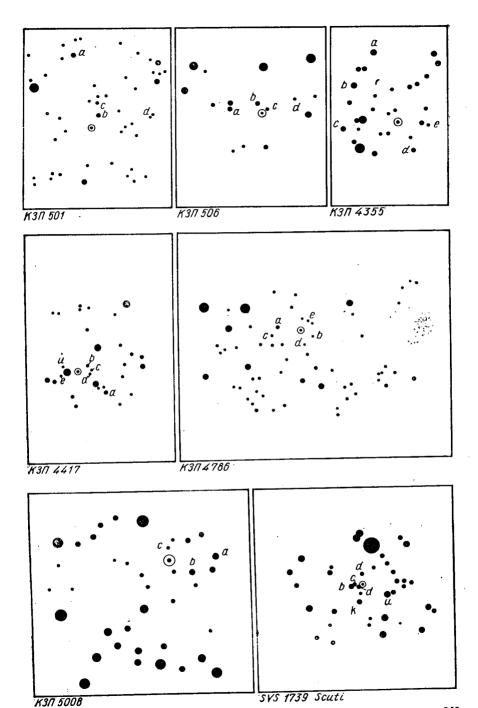




16 6-178







ЛИТЕРАТУРА

- 1. Курочкин Н. Е. Исследование переменных звезд в области SA 110.-ПЗ, 1959, 12, 4, 277.
- 2. Соловьев А. В. Наблюдения 57 звезд типа RR Лиры. Тадж. Труды, 1941, 1, 3.
- 3. Florja N.— Untersuchungen über die RR-Lyrae-Sterne, XXXIV. AM Virginis.— Π3, 1934, 4, 7, 259.
- 4. Цесевич В. П. О двух звездах типа RR Лиры.— ПЗ, приложение, 1971, 1, 3, 227.
- 5. Bacóš G. A. Discussion of thirty-one variable stars in or near the constel-
- lation Scutum. Leid. Ann., 1950, 20, 4.
 Boyce E. H. Twenty New Variable Stars with High Latitudes in MWF 6.— HB, 1939, 911.
- 7. Gessner H. Neue Veränderliche S 7584 S 7593 Aquilae. Sonn. Mitt., 659, 1962,
- 8. Harwood M. Survey of variable stars in Scutum Cloud. Preliminary results.— HB, 1931, 880.
- 9. Harwood M. Survey of variable stars in the Scutum Cloud. Paper 2.-HB, 1933, 893.
- 10. Harwood M. The variable stars in the Scutum Cloud.— Leid. Ann. 1962, 21, 8, 387.
- 11. Häussler K. EX Vul.— IBVS, 1972, 639.
- 12. Hoffleit D. New Variable Stars in Aquilae. HB, 1932, 887.
- Hoffleit D. New Variable Stars in Taurus and Aurigae. HB, 1935, 901.
 Hoffmeister C. Mitteilungen über neuentdeckte veränderliche Sterne (S9727—S10152). AN, 1967, 290, 1—2.
- 15. Hoffmeister C. Mitteilungen über neuentdeckte veränderliche Sterne (S10153-10375).— AN, 1968, 290, 5—6.
 16. Hyghes E. M. Variable Stars in MWF 213.— HB, 1931, 883.
- 17. Hyghes-Boyce E. M. Variable Stars in MWF 361.— Harv. Ann., 1942, 109, 2.
- 18. Kwee K. K., Braun L. D. Investigation on Population II Cepheids.-
- BAN Suppl., 1967, 2, 96.

 19. Oosterhoff P. Th. New observations and improved elements for twenty variable stars in or near the Constellation Scutum.— BAN, 1943, 9, 356.
- 20. Oosterhoff P. Th. Twenty variable stars in or near the Constellation Scutum.— BAN, 1943, 9, 385.
- 21. Richter G. Die veränderlichen der nordlichen der Milchstrasse. Teil XII.-VSS, 1961, 4, 6.
- Rohlfs E. Die veränderlichen der nordlichen Milchstrasse. Teil V. VSS, 1949, 1. 3.
- 23. Romano G. 26 nouve variabili. Coelum. 1958, 26, 11-12.
- 24. Shapley H., Hughes E. M. Variable Stars in high Galactic Latitude. - Harv. Ann., 1934, 90, 4.
- 25. Strohmeier W. Elements for Sonneberg Variables. IBVS, 1967, 199.

СПИСОК принятых в библиографии сокращений

ПЗ - Переменные Звезды.

ПЗ, приложение — Переменные Звезды, приложение.

— Труды Таджикской астрономической обсерватории. Душанбе. Тадж. Труды

- Astronomische Nachrichten. AN

- Bulletin of the Astronomical Institutes of the Netherlands. BAN — Bulletin of the Astronomical Institutes of the Netherlands, Supplement Series. BAN Suppl.

- Coelum. Coelum

- The Astronical Observatory of Harvard College Annals. Harv. Ann.

- Bulletin of the Harvard College Observatory. HB

 Information Bulletin on Variable Stars. Comission 27 of the IAU, Budapest, Konkoly Observatory. **IBVS**

- Annalen van de Sterrewacht te Leiden. Leid. Ann.

 Mitteilungen der Sternwarte zu Sonneberg.
 Veröffentlichungen der Sternwarte der Deutschen Akademie der Wissenschaften zu Berlin in Sonneberg. Sonn. Mitt. VSS

УКАЗАТЕЛЬ ЗВЕЗД — INDEX OF STARS

— название звезды, 2 — страница текста, 3 — наблюдения (номер таблицы), 4 — наблюдения (страница) 1 — name of star, 2 — page of text, 3 — observations (number of table), 4 — observations (number of page)

1	2	3	4	1	2	3	4
WX Aqr	192	106,107	194,196	V 723 Oph	209	127	215
AI Agr	193	106,107	194,196	V 724 Oph	209	119	206
AK Aqr BE Aqr	197 197	106 106	194 194	V 731 Oph V 765 Oph	$\begin{array}{c} 210 \\ 210 \end{array}$	119,127 121	206,215 211
BG Agr	197	106	194	V 768 Oph	210	121	211
BY Agr	198	111	199	V 700 Oph V 777 Oph	211	121	211
CF Aqr	199	113	200	V 1011 Oph	212	121	211
CG Agr	203	113	200	UU Sge	161	78,86	144,162
CH Agr	203	113	200	DG Sge	171	78,86	144,162
CL Aqr	203	113	200	DP Sge	172	86	162
CO Agr	204	113	200	EG Sge	174	86,100	162,187
CS Aqr	205	113	200	FU Sge	177	86	162
MO Agl	144	78,79	144,146	FX Sge	178	86	162
MP Agl	150	78,79	144,146	FY Sge	180	86	162
MR Agi	150	78	144	GS Sge	181	86	162
NN Agl	151	78.79,81	144,146,152	GT Sge	182	86	162
V 453 Aql	153	82	154	GW Sge	183	86	162
V 611 Aql	153	82	154	SU Sct	44	45,47	79,82
V 647 Aql	153 155	82 82	154 154	SY Sct	42	47 50	82
V 999 Aql V 1013 Aql	156	8∠ 78,79	15 4 144,146	SZ Sct GS Aur	61 21	50 13,15,	95
V 1013 Aqi V 1024 Aqi	158	79,82	146,154	GS Aui	21	16,17	26,3 0, 32,3 4
V 1033 Aql	158	79,02	146	GY Aur	8	13,14,	26,30,
V 1064 Aql	159	79	146	GI Au	U	15,16,17	32,34
V 1148 Aql	159	82	154	HO Aur	40	13,15,16	26,30,32
BH Aur	15	13,15,	26,30,	TT Hor	103	55,56,57	104,110.
		16,17	32,34			58,59	114,115,
CH Aur	5	13	26				118
DN Aur	25	13	26	2 Hor	122	55,56,	104,110,
El Aur	6	13	26			57,62	114,122
5 Ног	128	55	104	3 Hor	124	55,56,	104,110,
6 Hor	137	55,75	104,135	4 11	1.40	57,67	114,127
8 Hor	134	55,57,76	104,114, 141	4 Hor	140	55,56, 57,58	104,110, 114,115
9 Hor	139	55,75	104,135	BG Sct	71	50	95
10 Hor	129	55,62	104,122	BM Sct	71	51	99
11 Hor	120	55,62	104,122	BQ Sct	62	50	95
13 Hor	132	5 5, 56,57	104,110,	BR Sct	62	50	95
		, ,	114	BÙ Sct	58	45,46,	79,81,
V 370 Oph	208	119,121,	207,211,			47,48	82,86
•		128	217	BZ Sct	73	46,49	81,90
V 722 Oph	2 0 8	126,127	214,215	CE Set	74	51	99

Продолжение

1	2	3	4	1	2	3	4
00.5.4	47	49	90	BQ Vir	228	137	224
CO Sct	47	49 49	90	BŮ Vir	229	137,142	224,229
CZ Sct	49 51	49 49	90	BX Vir	229	137,139,	224,228,
FI Sct	51	49	50	D11 1		142	229
FQ Sct	76	50	95	CY Vir	230	144	231
FT Sct	52	48,49	86,90	CZ Vir	232	144	231
FU Sct	44	47,48	82.86	EX Vul	184	91,99,100	175,186,
FU SCI	47	41,40	02,00				187
CF Ser	212	126,127	214,215	GH Vul	188	91	175
CG Ser	213	126,127	214 215	HU Vul	188	91	175
CO Ser	216	126,127	214,215	HV Vul	188	91	175
	77	48	86	КЗП 357	119	56,57,	110,114,
DQ Ser	"	40	00			58,59	115,118
DV Ser	53	48	86	КЗП 475	11	16,17,18	32,35,36
AP Tau	8	13,14,17	26,30,35	КЗП 484	22	18	36
AS Tau	10	13,15,	29,30,	КЗП 487	22	18	36
AS Tau	10	16,17	32,35				
VX Vir	218	137	224	КЗП 490	13	18	36
WW Vir	219	133	220	К3П 492	25	18	36
AM Vir	219	134,136	222,223	К3П 494	23	18	36
	223	134,130	224	КЗП 499	13	18	36
BL Vir	223 227	137,139	224,228	К3П 501	17	15,16,	32,35,36
BM Vir	221	107,100	221,220	.(011 011		17,18	
TT Sct	54	47	82	КЗП 506	25	15,16,18	32,36
TV Sct	61	34	62	ҚЗП 4355	77	43,44	7 8
UY Sct	64	36,37,38,		Қ3П 4417	63	50	95
U i Sci	04	39,50	69,95	КЗП 4786	191	82,86	154, 162
War c +	56	47	82	K3II 4845	191	-	
WY Sct	46	45,46,49	79,81,90	КЗП 5008	191	86,99,100	162,
AN Sct	57	45,40,43	82	1(011 0000			186,187
AY Sct	57 57	51	99	СПЗ 1739	63	35	64
AZ Act	Ji	91	55	3.10 1.00			

V. P. Tsesevich

STUDIES OF VARIABLE STARS IN SELECTED REGIONS OF THE GALACTIC FIELD

Summary

From photographic plates of the Moscow, Harvard, Simeiz and Odessa Collections 122 variable stars were investigated. Information on brightness of comparison stars is summarized in Tables 1, 17, 51, 75, 102, 116, 129. Charts of neighbourhoods are given in Appendix.

Among the stars studied fifty-two belong to RR Lyrae-type. Drastic secular variations of the period are found in stars NN Aquilae, No. 3, No. 10 Horologii, DP Sagittae, WY, BU Scuti and HV Vulpeculae. The considerable Blazhko effect is detected in stars WY Scuti, HV Vulpeculae, CSV 501.

Of particular interest is the cepheid SU Scuti. It shows sudden drastic variations in the period. It is worth studying in details from new observations.

30 eclipsing stars were studied as well. Three of them have variable periods. These are GY Aurigae, CSV 574 and No. 11 Horologii.

One of the eclipsing stars, EX Vulpeculae, shows an asymmetric light curve at a total eclipse, the light not remaining constant during the total eclipse. Gas flows inside the binary system seem to account for this.

Three stars, HO, DN Aurigae and CSV 506 are probably of RW Aurigae type. Incidentally they occupy the position near the very RW in the sky.

оглавление

Предис	словие		3							
Глава I.	Исследование переменных звезд в области созвездий Возничего и Тельца									
		Затменные звезды	5 5 15							
		Полуправильные и неправильные звезды	21 25							
Глава II.	Исследование переменных звезд в области созвездий Щита и									
		41								
	On inclinate obeomail	42 44								
	пефенды	54								
	Долгопериодические звезды	61 64								
Глава III.	Исследование переменных звезд созвездия Часов 1	02								
	Звезды типа RR Лиры	03 22 34								
Глава	IV.		43							
Глава	v.	Звезды типа RR Лиры в созвездии Водолея	92							
Глава	VI.	Звезды типа RR Лиры созвездий Змееносца и Змев 2	2 0 6							
Глава	VII.	Звезды типа RR Лиры созвездия Девы	218							
Карты	окрес	тностей переменных звезд с обозначением звезд сравнения 2	236							
Литера	атура		250							
Списон	прин	ятых в библиографии сокращений 2	251							
Указа	тель з	ввезд (index of stars)	252							
Резюм	ена	английском языке	54							

Владимир Платонович Цесевич ИССЛЕДОВАНИЕ ПЕРЕМЕННЫХ ЗВЕЗД В ИЗБРАННЫХ ОБЛАСТЯХ МЛЕЧНОГО ПУТИ

Печатается по постановлению ученого совета Главной астрономической обсерватории АН УССР

Редактор А. Я. Бельдий Художественный редактор И. П. Антонюк Оформление художника Д. Д. Грибова Технический редактор А. М. Капустина Корректоры Л. Н. Тищенко, Е. А. Михалец

Сдано в набор 24.1X 1975 г. Подписано к печати 17.111 1976 г. БФ 07885. Зак. № 6-178. Изд. № 142. Тираж 1000. Бумага № 1, 60-90¹/_{1e}. Усл. печ. листов 16. Учетно-изд. листов 17,09. Цена 1 руб. 78 коп.

Издательство «Наукова думка», Киев, Репина, 3.

Отпечатано с матриц Головного предприятия республиканского производственного объединения «Полиграфкнига» Госкомиздата УССР, г. Киев, ул. Довженко, 3 на Харьковской книжной фабрике «Коммунист» республиканского производственного объединения «Подиграфкнига» Госкомиздата УССР, г. Харьков, ул. Энгельса, 11.